Fluctuations of symmetric exclusion with open boundary

$\mathscr{P a t r i ́ c i a ~ G o n c ̧ a l v e s ~}$

Rouen
October 2021

Goint with

Cédric Bernardin, Byron Jiménez-Oviedo, Stefano Scotta, Pedro Cardoso

Goint with

Tertuliano Franco, Milton Jara, Otávio Menezes, Adriana Neumann

Outline of the mini-course:

C. We will analyse the fluctuations for an exclusion process in contact with stochastic reservoirs when jumps are:
§. Hydrodynamics (Lecture 1);
© Fluctuations (Lecture 2).

Let us start with the simplest case: jumps to nearest-neighbors.

Now $\Lambda=[0,1]$ and $\Lambda_{N}=\{1, \ldots, N-1\}$. The state space of the Markov process is $\Omega_{N}=\{0,1\}^{\Lambda_{N}}$.

Lecture 1: Hydrodynamics

SSEP in contact with reservoirs

The dynamics:

- For $N \geq 1$ let $\Lambda_{N}=\{1, \ldots, N-1\}$.
- We denote the process by $\left\{\eta_{t}: t \geq 0\right\}$ which has state space $\Omega_{N}:=\{0,1\}^{\Lambda_{N}}$.
- The infinitesimal generator $\mathcal{L}_{N}=\mathcal{L}_{N, 0}+\mathcal{L}_{N, b}$ is given on $f: \Omega_{N} \rightarrow \mathbb{R}$, by

$$
\begin{gathered}
\left(\mathcal{L}_{N, 0} f\right)(\eta)=\sum_{x=1}^{N-2} \frac{1}{2}\left(f\left(\eta^{x, x+1}\right)-f(\eta)\right), \\
\left(\mathcal{L}_{N, b} f\right)(\eta)=\frac{\kappa}{N^{\theta}} \sum_{x \in\{1, N-1\}} c_{r_{x}}(\eta(x))\left(f\left(\eta^{x}\right)-f(\eta)\right),
\end{gathered}
$$

where for $x=1$ and $x=N-1$, $c_{r_{x}}(\eta(x))=r_{x}(1-\eta(x))+\left(1-r_{x}\right) \eta(x), r_{1}=\alpha$ and $r_{N-1}=\beta$.

Goal: analyse the impact of changing the strength of the reservoirs (by changing θ) on the macroscopic behavior of the system.

Invariant measures:

If $\alpha=\beta=\rho$ the Bernoulli product measures are invariant (equilibrium measures): $\nu_{\rho}(\eta: \eta(x)=1)=\rho$.

If $\alpha \neq \beta$ the Bernoulli product measure is no longer invariant, but since we have a finite state irreducible Markov process there exists a UNIQUE invariant measure: the stationary measure (non-equilibrium) denoted by $\mu_{s s}$.

By the matrix ansatz method one can get information about this measure. (Not in the long jumps case.)

Hydrodynamic Limit:

C For $\eta \in \Omega_{N}$, let

$$
\pi_{t}^{N}(\eta, d q)=\frac{1}{N-1} \sum_{x=1}^{N-1} \eta_{t N^{2}}(x) \delta_{x / N}(d q)
$$

be the empirical measure. (Diffusive time scaling!)
$\boldsymbol{\beta}$ Assumption: fix $g:[0,1] \rightarrow[0,1]$ measurable and a sequence of probability measures $\left\{\mu_{N}\right\}_{N \geq 1}$ such that for every $H \in C([0,1])$,

$$
\frac{1}{N-1} \sum_{x=1}^{N-1} H\left(\frac{x}{N}\right) \eta(x) \rightarrow_{N \rightarrow+\infty} \int_{0}^{1} H(q) g(q) d q
$$

wrt $\mu_{N} \cdot\left(\mu_{N}\right.$ is associated with $\left.g(\cdot)\right)$

Hydrodynamic Limit:

\& Assumption: fix $g:[0,1] \rightarrow[0,1]$ measurable and a sequence of probability measures $\left\{\mu_{N}\right\}_{N \geq 1}$ such that for every $H \in C([0,1])$,

$$
\frac{1}{N-1} \sum_{x=1}^{N-1} H\left(\frac{x}{N}\right) \eta(x) \rightarrow_{N \rightarrow+\infty} \int_{0}^{1} H(q) g(q) d q,
$$

wrt μ_{N}. (i.e. $\left.\pi_{0}^{N}(\eta, d q) \rightarrow_{N \rightarrow+\infty} g(q) d q\right)$
© Then: for any $t>0$,

$$
\pi_{t}^{N}(\eta, d q) \rightarrow_{N \rightarrow+\infty} \rho(t, q) d q,
$$

wrt $\mu_{N}(t)$, where $\rho(t, q)$ evolves according to a PDE, the hydrodynamic equation.

Hydrodynamic eq.

Heat equation:
$\partial_{t} \rho_{t}(q)=\frac{1}{2} \partial_{q}^{2} \rho_{t}(q)$.
C) $\theta>1$ Neumann b.c.:

$$
\partial_{q} \rho_{t}(0)=\partial_{q} \rho_{t}(1)=0 .
$$

C) $\theta=1$ Robin b.c.:
$\partial_{q} \rho_{t}(0)=\kappa\left(\rho_{t}(0)-\alpha\right)$,
$\partial_{q} \rho_{t}(1)=\kappa\left(\beta-\rho_{t}(1)\right)$.
C) $\theta<1$ Dirichlet b.c.:
$\rho_{t}(0)=\alpha, \rho_{t}(1)=\beta$.

Hydrostatic Limit:

Theorem: Let $\mu_{s s}$ be the stationary measure for the process $\left\{\eta_{t}\right\}_{t \geq 0}$. Then, $\mu_{s s}$ is associated to $\bar{\rho}:[0,1] \rightarrow[0,1]$ given on $q \in(0,1)$ by

$$
\bar{\rho}(q)=\left\{\begin{array}{l}
(\beta-\alpha) q+\alpha ; \theta<1 \\
\frac{\kappa(\beta-\alpha)}{2+\kappa} q+\alpha+\frac{\beta-\alpha}{2+\kappa} ; \theta=1 \\
\frac{\beta+\alpha}{2} ; \theta>1
\end{array}\right.
$$

$\bar{\rho}(\cdot)$ is a stationary solution of the hydrodynamic equation.

The proof:

Proof of the results?

Two things to do:
©. Tightness of \mathbb{Q}_{N}, where \mathbb{Q}_{N} is induced by $\mathbb{P}_{\mu_{N}}$ and the map

$$
\pi^{N}: \mathcal{D}\left([0, T], \Omega_{N}\right) \longrightarrow \mathcal{D}\left([0, T], \mathcal{M}_{+}\right)
$$

\& Characterization of limit points: limit points are concentrated on trajectories of measures that are absolutely continuous wrt the Lebesgue measure and the density is a weak solution of the corresponding PDE:
$\mathbb{Q}\left(\pi: \pi_{t}(d q)=\rho(t, q) d q\right.$ and $\rho_{t}(q)$ is solution to the PDE $)=1$.

Let us focus on last item.

The notion of weak solution:

Let $g:[0,1] \rightarrow[0,1]$ be a measurable function. We say that $\rho:[0, T] \times[0,1] \rightarrow[0,1]$ is a weak solution of the HEDBC if:
\&. $\rho \in L^{2}\left(0, T ; \mathcal{H}^{1}\right)$;
C ρ satisfies the weak formulation:

$$
\begin{aligned}
& \int_{0}^{1} \rho_{t}(q) H_{t}(q)-g(q) H_{0}(q) d q \\
& -\int_{0}^{t} \int_{0}^{1} \rho_{s}(q)\left(\frac{1}{2} \partial_{q}^{2}+\partial_{s}\right) H_{s}(q) d s d q \\
& +\frac{1}{2} \int_{0}^{t} \beta \partial_{q} H_{s}(1)-\alpha \partial_{q} H_{s}(0) d s=0
\end{aligned}
$$

for all $t \in[0, T]$ and any function $H \in C_{0}^{1,2}([0, T] \times[0,1])$.

Another notion of solution:

Let $g:[0,1] \rightarrow[0,1]$ be a measurable function. We say that $\rho:[0, T] \times[0,1] \rightarrow[0,1]$ is a weak solution of the HEDBC if:
\& $\rho \in L^{2}\left(0, T ; \mathcal{H}^{1}\right)$;
© ρ satisfies the weak formulation:

$$
\begin{aligned}
& \int_{0}^{1} \rho_{t}(q) H_{t}(q) d q-\int_{0}^{1} g(q) H_{0}(q) d q \\
& -\int_{0}^{t} \int_{0}^{1} \rho_{s}(q)\left(\frac{1}{2} \partial_{q}^{2}+\partial_{s}\right) H_{s}(q) d s d q=0
\end{aligned}
$$

for all $t \in[0, T]$ and any function $H \in C_{c}^{1,2}([0, T] \times[0,1])$;
© $\rho_{t}(0)=\alpha$ and $\rho_{t}(1)=\beta$, for $t \in(0, T]$.

The notion of weak solution:

Let $g:[0,1] \rightarrow[0,1]$ be a measurable function. We say that $\rho:[0, T] \times[0,1] \rightarrow[0,1]$ is a weak solution of the heat equation with Robin b.c. if:
© $\rho \in L^{2}\left(0, T ; \mathcal{H}^{1}\right)$,
\& ρ satisfies the weak formulation:

$$
\begin{aligned}
\int_{0}^{1} \rho_{t}(q) & H_{t}(q) d q-\int_{0}^{1} g(q) H_{0}(q) d q \\
& -\int_{0}^{t} \int_{0}^{1} \rho_{s}(q)\left(\frac{1}{2} \partial_{q}^{2}+\partial_{s}\right) H_{s}(q) d s d q \\
& +\frac{1}{2} \int_{0}^{t}\left\{\rho_{s}(1) \partial_{q} H_{s}(1)-\rho_{s}(0) \partial_{q} H_{s}(0)\right\} d s \\
& -\frac{\kappa}{2} \int_{0}^{t}\left\{H_{s}(0)\left(\alpha-\rho_{s}(0)\right)+H_{s}(1)\left(\beta-\rho_{s}(1)\right)\right\} d s=0
\end{aligned}
$$

for all $t \in[0, T]$ and any function $H \in C^{1,2}([0, T] \times[0,1])$.

Characterizing limit points:

Dynkin's formula: Let $\left\{\eta_{t}\right\}_{t \geq 0}$ be a Markov process with generator \mathcal{L} and with countable state space E. Let F : $\mathbb{R}^{+} \times E \rightarrow \mathbb{R}$ be a bounded function such that

- $\forall \eta \in E, F(\cdot, \eta) \in C^{2}\left(\mathbb{R}^{+}\right)$,
- there exists a finite constant C, such that

$$
\sup _{(s, \eta)}\left|\partial_{s}^{j} F(s, \eta)\right| \leq C, \text { for } j=1,2
$$

For $t \geq 0$, let

$$
M_{t}^{F}=F\left(t, \eta_{t}\right)-F\left(0, \eta_{0}\right)-\int_{0}^{t}\left(\partial_{s}+\mathcal{L}\right) F\left(s, \eta_{s}\right) d s
$$

Then, $\left\{M_{t}^{F}\right\}_{t \geq 0}$ is a martingale wrt $\mathcal{F}_{s}=\sigma\left(\eta_{s} ; s \leq t\right)$.

Characterizing limit points:

Let us fix a test function $H:[0,1] \rightarrow \mathbb{R}$ and apply Dynkin's formula with

$$
F\left(t, \eta_{t}\right)=\left\langle\pi_{t}^{N}, H\right\rangle=\frac{1}{N-1} \sum_{x=1}^{N-1} \eta_{t N^{2}}(x) H\left(\frac{x}{N}\right) .
$$

Note that F does not depend on time only through the process η. A simple computation shows that

$$
\begin{aligned}
N^{2} \mathcal{L}_{N}\left\langle\pi_{s}^{N}, H\right\rangle & =\left\langle\pi_{s}^{N}, \frac{1}{2} \Delta_{N} H\right\rangle \\
& +\frac{1}{2} \nabla_{N}^{+} H(0) \eta_{s N^{2}}(1)-\frac{1}{2} \nabla_{N}^{-} H(1) \eta_{s N^{2}}(N-1) \\
& +N^{1-\theta} H\left(\frac{1}{N}\right)\left(\alpha-\eta_{s N^{2}}(1)\right) \\
& +N^{1-\theta} H\left(\frac{N-1}{N}\right)\left(\beta-\eta_{s N^{2}}(N-1)\right)
\end{aligned}
$$

$\theta \in[0,1):$

Take a function $H:[0,1] \rightarrow \mathbb{R}$ such that $H(0)=H(1)=0$ and then we get

$$
\begin{aligned}
M_{t}^{N}(H) & =\left\langle\pi_{t}^{N}, H\right\rangle-\left\langle\pi_{0}^{N}, H\right\rangle-\int_{0}^{t}\left\langle\pi_{s}^{N}, \frac{1}{2} \Delta_{N} H\right\rangle d s \\
& -\frac{1}{2} \int_{0}^{t} \nabla_{N}^{+} H(0) \eta_{s N^{2}}(1)-\nabla_{N}^{-} H(1) \eta_{s N^{2}}(N-1) d s+O\left(N^{-\theta}\right)
\end{aligned}
$$

If we can replace $\eta_{s N^{2}}(1)$ by α and $\eta_{s N^{2}}(N-1)$ by β (this will be made rigorous ahead but only works for $\theta<1$!) then above we have

$$
\begin{aligned}
M_{t}^{N}(H) & =\left\langle\pi_{t}^{N}, H\right\rangle-\left\langle\pi_{0}^{N}, H\right\rangle-\int_{0}^{t}\left\langle\pi_{s}^{N}, \frac{1}{2} \Delta_{N} H\right\rangle d s \\
& -\frac{1}{2} \int_{0}^{t} \nabla_{N}^{+} H(0) \alpha-\nabla_{N}^{-} H(1) \beta d s+O\left(N^{-\theta}\right) .
\end{aligned}
$$

Compare with the PDE (note that H does not depend on time).

Still $\theta \in[0,1)$:

Take the expectation above to get

$$
\begin{aligned}
& \frac{1}{N} \sum_{x=1}^{N-1} H\left(\frac{x}{N}\right)\left(\rho_{t}^{N}(x)-\rho_{0}^{N}(x)\right)-\int_{0}^{t} \frac{1}{N} \sum_{x=1}^{N-1} \frac{1}{2} \Delta_{N} H\left(\frac{x}{N}\right) \rho_{s}^{N}(x) d s \\
& -\frac{1}{2} \int_{0}^{t} \nabla_{N}^{+} H(0) \alpha-\nabla_{N}^{-} H(1) \beta d s+O\left(N^{-\theta}\right)=0
\end{aligned}
$$

Assume that $\rho_{t}^{N}(x) \sim \rho_{t}(x / N)$ and take the limit in N to get

$$
\begin{aligned}
& \int_{0}^{1} \rho_{t}(q) H(q)-\rho_{0}(q) H(q) d q-\int_{0}^{t} \int_{0}^{1} \frac{1}{2} \partial_{q}^{2} H(q) \rho_{s}(q) d q d s \\
& -\frac{1}{2} \int_{0}^{t} \partial_{q} H(0) \alpha-\partial_{q} H(1) \beta d s=0
\end{aligned}
$$

Compare with the PDE (note that H does not depend on time).

$\theta<0$:

Recall that the previous error blows up when $N \rightarrow \infty$. So now, we take a function $H:[0,1] \rightarrow \mathbb{R}$ with compact support and then we get

$$
M_{t}^{N}(H)=\left\langle\pi_{t}^{N}, H\right\rangle-\left\langle\pi_{0}^{N}, H\right\rangle-\int_{0}^{t}\left\langle\pi_{s}^{N}, \frac{1}{2} \Delta_{N} H\right\rangle d s .
$$

Again compare with the PDE but note that H does not depend on time.
In this case we do not see the Dirichlet boundary conditions and we need extra results to conclude.

$\theta=1:$

Now, we take a function $H:[0,1] \rightarrow \mathbb{R}$ and we get

$$
\begin{aligned}
M_{t}^{N}(H) & =\left\langle\pi_{t}^{N}, H\right\rangle-\left\langle\pi_{0}^{N}, H\right\rangle-\int_{0}^{t}\left\langle\pi_{s}^{N}, \frac{1}{2} \Delta_{N} H\right\rangle d s \\
& -\frac{1}{2} \int_{0}^{t} \nabla_{N}^{+} H(0) \eta_{s N^{2}}(1)-\nabla_{N}^{-} H(1) \eta_{s N^{2}}(N-1) d s \\
& -\frac{\kappa}{2} \int_{0}^{t} H\left(\frac{1}{N}\right)\left(\alpha-\eta_{s N^{2}}(1)\right)+H\left(\frac{N-1}{N}\right)\left(\beta-\eta_{s N^{2}}(N-1)\right) d s .
\end{aligned}
$$

If we can replace $\eta_{s N^{2}}(1)\left(\right.$ resp. $\left.\eta_{s N^{2}}(N-1)\right)$ by its average in a box around 1 (resp. $N-1$) (this works for any $\theta \geq 1$):

$$
\vec{\eta}_{s N^{2}}^{\epsilon N}(1):=\frac{1}{\epsilon N} \sum_{x=1}^{1+\epsilon N} \eta_{s N^{2}}(x), \quad \overleftarrow{\eta}_{s N^{2}}^{\epsilon N}(N-1):=\frac{1}{\epsilon N} \sum_{x=N-1}^{N-1-\epsilon N} \eta_{s N^{2}}(x)
$$

and noting that $\vec{\eta}_{s N^{2}}^{\epsilon N}(1) \sim \rho_{s}(0)\left(\right.$ resp. $\left.\vec{\eta}_{s N^{2}}^{\epsilon N}(N-1) \sim \rho_{s}(1)\right)$ we would get the terms in the PDE (compare).

$\theta>1:$

Again we take a function $H:[0,1] \rightarrow \mathbb{R}$ and in this case the terms from the boundary vanish. So we get

$$
\begin{aligned}
M_{t}^{N}(H) & =\left\langle\pi_{t}^{N}, H\right\rangle-\left\langle\pi_{0}^{N}, H\right\rangle-\int_{0}^{t}\left\langle\pi_{s}^{N}, \frac{1}{2} \Delta_{N} H\right\rangle d s \\
& -\frac{1}{2} \int_{0}^{t} \nabla_{N}^{+} H(0) \eta_{s N^{2}}(1)-\nabla_{N}^{-} H(1) \eta_{s N^{2}}(N-1) d s+O\left(N^{1-\theta}\right)
\end{aligned}
$$

As above, if we can replace $\eta_{s N^{2}}(1)$ (resp. $\left.\eta_{s N^{2}}(N-1)\right)$ by its average in a box around 1 (resp. $N-1$) and noting that $\vec{\eta}_{s n^{2}}^{\in N}(1) \sim \rho_{s}(0)\left(\right.$ resp. $\left.\vec{\eta}_{s N^{2}}^{\in N}(N-1) \sim \rho_{s}(1)\right)$ we would get the terms in the PDE (compare).

Keystone ingredients:

Recall that we need to prove that

For any $t>0$, we have that:

- for $\theta<1$

$$
\limsup _{N \rightarrow \infty} \mathbb{E}_{\mu_{N}}\left[\left|\int_{0}^{t}\left(\eta_{s N^{2}}(1)-\alpha\right) d s\right|\right]=0 ;
$$

- for $\theta \geq 1$

$$
\limsup _{N \rightarrow \infty} \mathbb{E}_{\mu_{N}}\left[\left|\int_{0}^{t}\left(\eta_{s N^{2}}(1)-\vec{\eta}_{s N^{2}}^{\epsilon N}(1)\right) d s\right|\right]=0
$$

and a similar result for $N-1$.

The empirical profile:

Fix an initial measure μ_{N} in Ω_{N}. For $x \in \Lambda_{N}$ and $t \geq 0$, let

$$
\rho_{t}^{N}(x)=\mathbb{E}_{\mu_{N}}\left[\eta_{t N^{2}}(x)\right] .
$$

We extend this definition to the boundary by setting

$$
\rho_{t}^{N}(0)=\alpha \text { and } \rho_{t}^{N}(N)=\beta, \text { for all } t \geq 0
$$

A simple computation shows that $\rho_{t}^{N}(\cdot)$ is a solution of

$$
\partial_{t} \rho_{t}^{N}(x)=N^{2}\left(\mathcal{B}_{N} \rho_{t}^{N}\right)(x), \quad x \in \Lambda_{N}, t \geq 0
$$

where the operator \mathcal{B}_{N} acts on functions $f: \Lambda_{N} \cup\{0, N\} \rightarrow \mathbb{R}$ as

$$
\begin{aligned}
& N^{2}\left(\mathcal{B}_{N} f\right)(x)=\Delta_{N} f(x), \quad \text { for } x \in\{2, \cdots, N-2\}, \\
& N^{2}\left(\mathcal{B}_{N} f\right)(1)=N^{2}(f(2)-f(1))+\frac{\kappa N^{2}}{N^{\theta}}(f(0)-f(1)) \\
& N^{2}\left(\mathcal{B}_{N} f\right)(N-1)=N^{2}(f(N-2)-f(N-1))+\frac{\kappa N^{2}}{N^{\theta}}(f(N)-f(N-1)) .
\end{aligned}
$$

Stationary empirical profile:

The stationary solution of the previous equation is given by

$$
\rho_{s s}^{N}(x)=\mathbb{E}_{\mu_{s s}}\left[\eta_{t N^{2}}(x)\right]=a_{N} x+b_{N}
$$

where $a_{N}=\frac{\kappa(\beta-\alpha)}{2 N^{\theta}+\kappa(N-2)}$ and $b_{N}=a_{N}\left(\frac{N^{\theta}}{\hbar}-1\right)+\alpha$, so that

$$
\lim _{N \rightarrow \infty} \max _{x \in \Lambda_{N}}\left|\rho_{s s}^{N}(x)-\bar{\rho}\left(\frac{x}{N}\right)\right|=0
$$

where

$$
\bar{\rho}(q)=\left\{\begin{array}{l}
(\beta-\alpha) q+\alpha ; \theta<1, \\
\frac{\kappa(\beta-\alpha)}{2+\kappa} q+\alpha+\frac{\beta-\alpha}{2+\kappa} ; \theta=1, \\
\frac{\beta+\alpha}{2} ; \theta>1,
\end{array}\right.
$$

is a stationary solution of the hydrodynamic equation.

Stationary correlations:

Let $V_{N}=\left\{(x, y) \in\{0, \cdots, N\}^{2}: 0<x<y<N\right\}$, and its boundary $\partial V_{N}=\left\{(x, y) \in\{0, \cdots, N\}^{2}: x=0\right.$ or $\left.y=N\right\}$.

Stationary correlations:

For $x<y \in V_{N}$, let $\varphi_{t}^{N}(x, y)$ the two point correlation function between the occupation sites at $x<y \in V_{N}$ is defined by

$$
\varphi_{t}^{N}(x, y)=\mathbb{E}_{\mu_{N}}\left[\left(\eta_{t N^{2}}(x)-\rho_{t}^{N}(x)\right)\left(\eta_{t N^{2}}(y)-\rho_{t}^{N}(y)\right)\right] .
$$

Doing some simple, but long, computations we see that φ_{t}^{N} is a solution of

$$
\begin{cases}\partial_{s} \varphi_{s}(x, y)=\Delta_{V}^{N} \varphi_{s}(x, y)+g_{s}^{N}(x, y)+f_{s}^{N}(x, y), & (x, y) \in V_{N} \\ \varphi_{s}(x, y)=0, & (x, y) \in \partial V_{N}\end{cases}
$$

where the discrete laplacian $\Delta_{V_{N}}^{N}: V_{N} \cup \partial V_{N} \rightarrow \mathbb{R}$ is defined by

$$
\left\{\begin{aligned}
&\left(\Delta_{V}^{N} f\right)(x, y)=N^{2}(f(x+1, y)+f(x-1, y)+f(x, y-1) \\
&+f(x, y+1)-4 f(x, y)), \quad \text { for }|x-y|>1, \\
&\left(\Delta_{V}^{N} f\right)(x, x+1)=N^{2}(f(x-1, x+1)+f(x, x+2)-2 f(x, x+1)) \\
&\left(\Delta_{V}^{N} f\right)(x, y)=0, \quad \text { if }(x, y) \in \partial V_{N} .
\end{aligned}\right.
$$

Stationary correlations:

Above

$$
\begin{gathered}
g_{t}^{N}(x, y)=-\left(\nabla_{N}^{+} \rho_{t}^{N}(x)\right)^{2} \delta_{y=x+1}, \\
\nabla_{N}^{+} \rho_{t}^{N}(x)=N\left(\rho_{t}^{N}(x+1)-\rho_{t}^{N}(x)\right) \\
f_{s}^{N}(x, y)=\left(N^{2}-\frac{N^{2}}{N^{\theta}}\right) \varphi_{t}^{N}(x, y) \delta_{\{|y-x|=1, x=1 \text { or } y=N-1\}} .
\end{gathered}
$$

From simple, but long, computations we conclude that

$$
\begin{equation*}
\varphi_{s s}^{N}(x, y)=-\frac{(\alpha-\beta)^{2}\left(x+N^{\theta}-1\right)\left(N-y+N^{\theta}-1\right)}{\left(2 N^{\theta}+N-2\right)^{2}\left(2 N^{\theta}+N-3\right)} . \tag{1}
\end{equation*}
$$

from where it follows that

$$
\max _{x<y}\left|\varphi_{s s}^{N}(x, y)\right|=\left\{\begin{array}{l}
O\left(\frac{N^{\theta}}{N^{2}}\right), \theta<1, \tag{2}\\
O\left(\frac{1}{N}\right), \theta=1, \quad \rightarrow_{N \rightarrow \infty} 0 . \\
O\left(\frac{1}{N^{\theta}}\right), \theta>1,
\end{array}\right.
$$

