Products of random matrices and the statistical mechanics of disordered systems

Giambattista Giacomin

Université de Paris and Laboratoire Probabilités, Statistique et Modélisation

October 21st 2021

Straight to the main issue

To be very concrete:

the talk is about the product of IID random matrices

$$M_n^{\varepsilon} := \begin{pmatrix} 1 & \varepsilon \\ \varepsilon Z_n & Z_n \end{pmatrix}$$

where $\varepsilon \in (-1,1)$ and $\{Z_n\}_{n=1,2,...}$ is an IID sequence of positive random variables with $\log Z_1 \in L^1$.

Straight to the main issue

To be very concrete:

the talk is about the product of IID random matrices

$$M_n^{\varepsilon} := \begin{pmatrix} 1 & \varepsilon \\ \varepsilon Z_n & Z_n \end{pmatrix}$$

where $\varepsilon \in (-1,1)$ and $\{Z_n\}_{n=1,2,...}$ is an IID sequence of positive random variables with $\log Z_1 \in L^1$.

More precisely we aim at the arepsilon o 0 behavior of the Lyapunov exponent

$$\mathcal{L}(\varepsilon) := \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \log \| M_n^{\varepsilon} M_{n-1}^{\varepsilon} \cdots M_1^{\varepsilon} \|$$

where $\|\cdot\|$ is an arbitrary matrix norm.

Straight to the main issue

To be very concrete:

the talk is about the product of IID random matrices

$$M_n^{\varepsilon} := \begin{pmatrix} 1 & \varepsilon \\ \varepsilon Z_n & Z_n \end{pmatrix}$$

where $\varepsilon \in (-1,1)$ and $\{Z_n\}_{n=1,2,...}$ is an IID sequence of positive random variables with $\log Z_1 \in L^1$.

More precisely we aim at the $\varepsilon \to 0$ behavior of the Lyapunov exponent

$$\mathcal{L}(\varepsilon) := \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \log \| M_n^{\varepsilon} M_{n-1}^{\varepsilon} \cdots M_1^{\varepsilon} \|$$

where $\|\cdot\|$ is an arbitrary matrix norm.

Simple exercise: $\mathcal{L}(0) = \max(0, \mathbb{E} \log Z)$, but $\varepsilon = 0$ looks pathological...

Key reference for us

[DH83] B. Derrida and H. J. Hilhorst Singular behaviour of certain infinite products of random 2 × 2 matrices J. Phys. A, 16(12):2641-2654, 1983.

Key reference for us

[DH83] B. Derrida and H. J. Hilhorst Singular behaviour of certain infinite products of random 2×2 matrices J. Phys. A, 16(12):2641-2654, 1983.

 \hookrightarrow In particular [DH83] contains several statistical mechanics examples in which this matrix product/lyapunov exponent comes up.

Key reference for us

[DH83] B. Derrida and H. J. Hilhorst Singular behaviour of certain infinite products of random 2×2 matrices J. Phys. A, 16(12):2641-2654, 1983.

- \hookrightarrow In particular [DH83] contains several statistical mechanics examples in which this matrix product/lyapunov exponent comes up.
- → For the statmech framework: also Crisanti, Paladin, Vulpiani *Products of random matrices in statistical physics*, 1993

Key reference for us

[DH83] B. Derrida and H. J. Hilhorst Singular behaviour of certain infinite products of random 2×2 matrices J. Phys. A, 16(12):2641-2654, 1983.

- \hookrightarrow In particular [DH83] contains several statistical mechanics examples in which this matrix product/lyapunov exponent comes up.
- \hookrightarrow For the statmech framework: also Crisanti, Paladin, Vulpiani *Products of random matrices in statistical physics*, 1993
- \hookrightarrow As it will be clear, we *exploit* [DH83] well beyond extracting from it the statmech motivation

Ising model with disordered external field: d=1, $\{h_j\}_{j=1,2,...}$ IID

$$\mathcal{H}_N(\sigma) := -J\sum_{i=1}^N \sigma_i \sigma_{i+1} - \sum_{i=1}^N h_i \sigma_i$$

Ising model with disordered external field: d=1, $\{h_j\}_{j=1,2,...}$ IID

$$\mathcal{H}_N(\sigma) := -J\sum_{i=1}^N \sigma_i\sigma_{i+1} - \sum_{i=1}^N h_i\sigma_i$$

The Gibbs measure $\exp(-\mathcal{H}_N(\sigma))/\mathcal{Z}_N$ with

$$\mathcal{Z}_N = \exp\left(\sum_{i=1}^N h_i + NJ\right) \operatorname{Tr} \prod_{i=1}^N \begin{pmatrix} 1 & e^{-2J} \\ e^{-2J} e^{-2h_i} & e^{-2h_i} \end{pmatrix}$$

and the matrix is of the desired form ($\varepsilon=e^{-2J}$ and $Z_i=e^{-2h_i}$) and the free energy density is the leading Lyapunov exponent apart for a trivial additive constant.

Ising model with disordered external field: d = 1, $\{h_j\}_{j=1,2,...}$ IID

$$\mathcal{H}_N(\sigma) := -J\sum_{i=1}^N \sigma_i\sigma_{i+1} - \sum_{i=1}^N h_i\sigma_i$$

The Gibbs measure $\exp(-\mathcal{H}_N(\sigma))/\mathcal{Z}_N$ with

$$\mathcal{Z}_N = \exp\left(\sum_{i=1}^N h_i + NJ\right) \operatorname{Tr} \prod_{i=1}^N \begin{pmatrix} 1 & e^{-2J} \\ e^{-2J} e^{-2h_i} & e^{-2h_i} \end{pmatrix}$$

and the matrix is of the desired form ($\varepsilon=e^{-2J}$ and $Z_i=e^{-2h_i}$) and the free energy density is the leading Lyapunov exponent apart for a trivial additive constant.

The $\varepsilon \searrow 0$ limit corresponds to the fixed disorder – strong ferromagnetic interaction limit.

• nearest neighbor Isind \mathbb{Z}^2 with columnar disorder: Onsager solution is robust to introduction of 1d disorder and the free energy can be expressed in term of the Lyapunov exponent of transfer matrices of 1d models.

- nearest neighbor Isind \mathbb{Z}^2 with columnar disorder: Onsager solution is robust to introduction of 1d disorder and the free energy can be expressed in term of the Lyapunov exponent of transfer matrices of 1d models.
- Quantum Ising chain with disordered external field and/or disordered interactions: mapping with Ising 2d with columnar disorder.

- nearest neighbor Isind \mathbb{Z}^2 with columnar disorder: Onsager solution is robust to introduction of 1d disorder and the free energy can be expressed in term of the Lyapunov exponent of transfer matrices of 1d models.
- Quantum Ising chain with disordered external field and/or disordered interactions: mapping with Ising 2d with columnar disorder.
- Prototype for general models with 1d disorder: $\mathbb{P}(Z > 1) > 0$ and $\mathbb{P}(Z < 1) > 0$ is the signature of *frustration*.

Fundamental quantities

$$\mathcal{L}(\varepsilon) \, := \, \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \log \left\| M_n^{\varepsilon} M_{n-1}^{\varepsilon} \cdots M_1^{\varepsilon} \right\| \quad \text{ with } M_j^{\varepsilon} \, := \, \begin{pmatrix} 1 & \varepsilon \\ \varepsilon Z_j & Z_j \end{pmatrix}$$

where $|\varepsilon| \in (0,1)$ and $(Z_j)_{j=1,2,...}$ IID sequence of positive r.v.'s.

Fundamental quantities

$$\mathcal{L}(\varepsilon) \, := \, \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \log \left\| M_n^{\varepsilon} M_{n-1}^{\varepsilon} \cdots M_1^{\varepsilon} \right\| \quad \text{ with } M_j^{\varepsilon} \, := \, \begin{pmatrix} 1 & \varepsilon \\ \varepsilon Z_j & Z_j \end{pmatrix}$$

where $|\varepsilon| \in (0,1)$ and $(Z_j)_{j=1,2,...}$ IID sequence of positive r.v.'s.

Existence of the limit and a number of facts like for example

$$\mathcal{L}(\varepsilon) = \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \log \left(M_n^{\varepsilon} M_{n-1}^{\varepsilon} \cdots M_1^{\varepsilon} \right)_{1,1}$$

are standard (under $\mathbb{E}|\log Z|<\infty$): Furstenberg, Kesten, Kingman...

Fundamental quantities

$$\mathcal{L}(\varepsilon) \, := \, \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \log \left\| M_n^\varepsilon M_{n-1}^\varepsilon \cdots M_1^\varepsilon \right\| \quad \text{ with } M_j^\varepsilon \, := \, \begin{pmatrix} 1 & \varepsilon \\ \varepsilon Z_j & Z_j \end{pmatrix}$$

where $|\varepsilon| \in (0,1)$ and $(Z_j)_{j=1,2,...}$ IID sequence of positive r.v.'s.

Existence of the limit and a number of facts like for example

$$\mathcal{L}(\varepsilon) = \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \log \left(M_n^{\varepsilon} M_{n-1}^{\varepsilon} \cdots M_1^{\varepsilon} \right)_{1,1}$$

are standard (under $\mathbb{E}|\log Z|<\infty$): Furstenberg, Kesten, Kingman...

Other (elementary) facts: $\mathcal{L}(\varepsilon) = \mathcal{L}(-\varepsilon)$ and $\mathcal{L}(0) = \max(0, \mathbb{E} \log Z)$.

Fundamental quantities

$$\mathcal{L}(\varepsilon) := \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \log \left\| M_n^{\varepsilon} M_{n-1}^{\varepsilon} \cdots M_1^{\varepsilon} \right\| \quad \text{ with } M_j^{\varepsilon} := \begin{pmatrix} 1 & \varepsilon \\ \varepsilon Z_j & Z_j \end{pmatrix}$$

where $|\varepsilon| \in (0,1)$ and $(Z_i)_{i=1,2,...}$ IID sequence of positive r.v.'s.

Existence of the limit and a number of facts like for example

$$\mathcal{L}(\varepsilon) = \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \log \left(M_n^{\varepsilon} M_{n-1}^{\varepsilon} \cdots M_1^{\varepsilon} \right)_{1,1}$$

are standard (under $\mathbb{E}|\log Z| < \infty$): Furstenberg, Kesten, Kingman...

Other (elementary) facts: $\mathcal{L}(\varepsilon) = \mathcal{L}(-\varepsilon)$ and $\mathcal{L}(0) = \max(0, \mathbb{E} \log Z)$.

Case $\varepsilon = 0$ dynamically different

(Université de Paris and LPSM)

Fundamental quantities

$$\mathcal{L}(\varepsilon) \, := \, \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \log \left\| M_n^\varepsilon M_{n-1}^\varepsilon \cdots M_1^\varepsilon \right\| \quad \text{ with } M_j^\varepsilon \, := \, \begin{pmatrix} 1 & \varepsilon \\ \varepsilon Z_j & Z_j \end{pmatrix}$$

where $|\varepsilon| \in (0,1)$ and $(Z_j)_{j=1,2,...}$ IID sequence of positive r.v.'s.

Existence of the limit and a number of facts like for example

$$\mathcal{L}(\varepsilon) = \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \log \left(M_n^{\varepsilon} M_{n-1}^{\varepsilon} \cdots M_1^{\varepsilon} \right)_{1,1}$$

are standard (under $\mathbb{E}|\log Z|<\infty$): Furstenberg, Kesten, Kingman...

Other (elementary) facts: $\mathcal{L}(\varepsilon) = \mathcal{L}(-\varepsilon)$ and $\mathcal{L}(0) = \max(0, \mathbb{E} \log Z)$.

Case $\varepsilon = 0$ dynamically different

Important results: [Ruelle 79] $\mathcal{L}(\cdot)$ is analytic on $(-1,1)\setminus\{0\}$ and [Le Page 89] $\mathcal{L}(\cdot)$ is Hölder C^0 on (-1,1) if $\mathbb{E}[\log Z] \neq 0$.

[DH83]: prediction about behavior of $\mathcal{L}(\varepsilon)$ for $\varepsilon \to 0$.

[DH83]: prediction about behavior of $\mathcal{L}(\varepsilon)$ for $\varepsilon \to 0$. Key: the convex function $\beta \longrightarrow \mathbb{E}Z^{\beta}$ (derivative in 0 is $\mathbb{E}\log Z$)

[DH83]: prediction about behavior of $\mathcal{L}(\varepsilon)$ for $\varepsilon \to 0$. Key: the convex function $\beta \longrightarrow \mathbb{E} Z^{\beta}$ (derivative in 0 is $\mathbb{E} \log Z$)

[DH83]: prediction about behavior of $\mathcal{L}(\varepsilon)$ for $\varepsilon \to 0$. Key: the convex function $\beta \longrightarrow \mathbb{E} Z^{\beta}$ (derivative in 0 is $\mathbb{E} \log Z$)

 $\alpha \in \mathbb{R}$ (or may not exist) but case $\alpha \leq 0$ is equivalent to $\alpha \geq 0$:

$$\begin{pmatrix} 1 & \varepsilon \\ \varepsilon Z & Z \end{pmatrix} = Z \begin{pmatrix} 1/Z & \varepsilon/Z \\ \varepsilon & 1 \end{pmatrix}$$

For $\varepsilon \to 0$:

• If $\alpha \in (0,1)$ then

$$\mathcal{L}(\varepsilon) \sim C|\varepsilon|^{2\alpha}$$
,

with C > 0 semi-explicit.

For $\varepsilon \to 0$:

• If $\alpha \in (0,1)$ then

$$\mathcal{L}(\varepsilon) \sim C|\varepsilon|^{2\alpha}$$
,

with C > 0 semi-explicit.

• If $\alpha \in [1, \infty) \setminus \mathbb{N}$

$$\mathcal{L}(\varepsilon) = c_1 \varepsilon^2 + \ldots + c_{\lfloor \alpha \rfloor} \varepsilon^{2\lfloor \alpha \rfloor} + C|\varepsilon|^{2\alpha} + o(|\varepsilon|^{2\alpha})$$

with explicit c_i 's (but not C)

For $\varepsilon \to 0$:

• If $\alpha \in (0,1)$ then

$$\mathcal{L}(\varepsilon) \sim C|\varepsilon|^{2\alpha}$$
,

with C > 0 semi-explicit.

• If $\alpha \in [1, \infty) \setminus \mathbb{N}$

$$\mathcal{L}(\varepsilon) = c_1 \varepsilon^2 + \ldots + c_{\lfloor \alpha \rfloor} \varepsilon^{2\lfloor \alpha \rfloor} + C|\varepsilon|^{2\alpha} + o(|\varepsilon|^{2\alpha})$$

with explicit c_i 's (but not C)

• If $\alpha = 0$ (i.e. $\mathbb{E}[\log Z] = 0$) [Nieuwenhuizen, Luck 86], [Derrida]

$$\mathcal{L}(arepsilon) \sim rac{\mathcal{C}}{\log(1/|arepsilon|)}$$

For $\varepsilon \to 0$:

• If $\alpha \in (0,1)$ then

$$\mathcal{L}(\varepsilon) \sim C|\varepsilon|^{2\alpha}$$
,

with C > 0 semi-explicit.

• If $\alpha \in [1, \infty) \setminus \mathbb{N}$

$$\mathcal{L}(\varepsilon) = c_1 \varepsilon^2 + \ldots + c_{\lfloor \alpha \rfloor} \varepsilon^{2\lfloor \alpha \rfloor} + C|\varepsilon|^{2\alpha} + o(|\varepsilon|^{2\alpha})$$

with explicit c_i 's (but not C)

ullet If lpha= 0 (i.e. $\mathbb{E}[\log Z]=$ 0) [Nieuwenhuizen, Luck 86], [Derrida]

$$\mathcal{L}(arepsilon) \sim rac{\mathcal{C}}{\log(1/|arepsilon|)}$$

Need conditions[DH83]: example of $Z \in \{0, z\}$ such that $\mathcal{L}(\varepsilon) \sim H(\log(1/|\varepsilon|)|\varepsilon|^{2\alpha}$, with $H(\cdot)$ periodic.

Theorem (Genovese, G., Greenblatt 2017)

Assume $\alpha \in (0,1)$ and

- lacktriangledown the support of the law of Z is bounded and bounded away from zero
- \bigcirc Z has a C^1 density.

Then there exists C > 0 (DH83 expression) and $\varkappa > 0$ (explicit) s.t.

$$\mathcal{L}(\varepsilon) = C\varepsilon^{2\alpha} + O(\varepsilon^{2\alpha + \varkappa})$$

Theorem (Genovese, G., Greenblatt 2017)

Assume $\alpha \in (0,1)$ and

- lacktriangledown the support of the law of Z is bounded and bounded away from zero

Then there exists C > 0 (DH83 expression) and $\varkappa > 0$ (explicit) s.t.

$$\mathcal{L}(\varepsilon) = C\varepsilon^{2\alpha} + O(\varepsilon^{2\alpha + \varkappa})$$

Theorem (Havret 2020)

Assume $\alpha \geq 1$ and other mild conditions on Z. Then

$$\mathcal{L}(\varepsilon) = c_1 \varepsilon^2 + \ldots + c_{\lfloor \alpha \rfloor} \varepsilon^{2\lfloor \alpha \rfloor} + \operatorname{Rest}(\varepsilon)$$

with upper and lower bounds on $\operatorname{Rest}(\varepsilon) = o(\varepsilon^{2\lfloor \alpha \rfloor})$

Theorem (G. and Greenblatt 2021)

Assume $\alpha = 0$ and

- $\mathbb{E}[Z^{\delta}] < \infty$ for δ in neighborhood of 0;
- Z has a density and the density of $\log Z$ is uniformly Hölder C^0 .

Then there exist $\kappa_1 > 0$, $\kappa_2 \in \mathbb{R}$ and $\eta \in (0,1)$ such that, for $\varepsilon \to 0$,

$$\mathcal{L}(\varepsilon) = \frac{\kappa_1}{\log(1/|\varepsilon|) + \kappa_2} + O(|\varepsilon|^{\eta}).$$

Theorem (G. and Greenblatt 2021)

Assume $\alpha = 0$ and

- $\mathbb{E}[Z^{\delta}] < \infty$ for δ in neighborhood of 0;
- Z has a density and the density of $\log Z$ is uniformly Hölder C^0 .

Then there exist $\kappa_1 > 0$, $\kappa_2 \in \mathbb{R}$ and $\eta \in (0,1)$ such that, for $\varepsilon \to 0$,

$$\mathcal{L}(\varepsilon) = \frac{\kappa_1}{\log(1/|\varepsilon|) + \kappa_2} + O(|\varepsilon|^{\eta}).$$

• Similar claim in [Nieuwenhuizen, Luck 86] assuming a special choice of law of Z without density, or with discontinuous densities (where one can push certain transform computations).

Theorem (G. and Greenblatt 2021)

Assume $\alpha = 0$ and

- $\mathbb{E}[Z^{\delta}] < \infty$ for δ in neighborhood of 0;
- Z has a density and the density of $\log Z$ is uniformly Hölder C^0 .

Then there exist $\kappa_1 > 0$, $\kappa_2 \in \mathbb{R}$ and $\eta \in (0,1)$ such that, for $\varepsilon \to 0$,

$$\mathcal{L}(\varepsilon) = \frac{\kappa_1}{\log(1/|\varepsilon|) + \kappa_2} + O(|\varepsilon|^{\eta}).$$

- Similar claim in [Nieuwenhuizen, Luck 86] assuming a special choice of law of Z without density, or with discontinuous densities (where one can push certain transform computations).
- [Derrida, priv. comm.]: [DH83] approach applies.

Classical (Furstenberg) representation formula for the Lyapunov exponent in terms of the invariant probability of the Markov chain

$$\widehat{x}, \widehat{M_1^{\varepsilon}x}, \widehat{M_2^{\varepsilon}M_1^{\varepsilon}x}, \dots$$

where $x \in \mathbb{R}^2$ (we can choose it in \mathbb{R}^2_+) and $\hat{x} = x/\|x\|$.

Classical (Furstenberg) representation formula for the Lyapunov exponent in terms of the invariant probability of the Markov chain

$$\widehat{x}, \widehat{M_1^{\varepsilon}x}, \widehat{M_2^{\varepsilon}M_1^{\varepsilon}x}, \dots$$

where $x \in \mathbb{R}^2$ (we can choose it in \mathbb{R}^2_+) and $\hat{x} = x/\|x\|$.

We compute for x > 0

$$\begin{pmatrix} 1 & \varepsilon \\ \varepsilon Z & Z \end{pmatrix} \begin{pmatrix} 1 \\ x \end{pmatrix} = \begin{pmatrix} 1 + \varepsilon x \\ Z(\varepsilon + x) \end{pmatrix}$$

SO

$$\tan(\theta) = x \mapsto \tan(\theta') = Z \frac{\varepsilon + x}{1 + \varepsilon x} = Z \frac{\varepsilon + \tan(\theta)}{1 + \varepsilon \tan(\theta)}$$

We compute for x > 0

$$\begin{pmatrix} 1 & \varepsilon \\ \varepsilon Z & Z \end{pmatrix} \begin{pmatrix} 1 \\ x \end{pmatrix} = \begin{pmatrix} 1 + \varepsilon x \\ Z(\varepsilon + x) \end{pmatrix}$$

SO

$$\tan(\theta) = x \mapsto \tan(\theta') = Z \frac{\varepsilon + x}{1 + \varepsilon x} = Z \frac{\varepsilon + \tan(\theta)}{1 + \varepsilon \tan(\theta)}$$

and

$$\mathcal{L}(arepsilon) = \int_0^{\pi/2} \log \left(1 + arepsilon an heta
ight) extit{m}_{arepsilon}(\,\mathrm{d} heta)$$

A formula for $\mathcal{L}(\varepsilon)$

We compute for x > 0

$$\begin{pmatrix} 1 & \varepsilon \\ \varepsilon Z & Z \end{pmatrix} \begin{pmatrix} 1 \\ x \end{pmatrix} = \begin{pmatrix} 1 + \varepsilon x \\ Z(\varepsilon + x) \end{pmatrix}$$

so

$$\tan(\theta) = x \mapsto \tan(\theta') = Z \frac{\varepsilon + x}{1 + \varepsilon x} = Z \frac{\varepsilon + \tan(\theta)}{1 + \varepsilon \tan(\theta)}$$

and

$$\mathcal{L}(arepsilon) = \int_0^{\pi/2} \log \left(1 + arepsilon an heta
ight) m_{arepsilon} (\, \mathrm{d} heta)$$

but we prefer to work with the variable $\sigma = \varepsilon \tan(\theta)$ so

$$\mathcal{L}(\varepsilon) = \int_0^\infty \log\left(1+\sigma\right) m_{\varepsilon}^{(1)}(\,\mathrm{d}\sigma) \ \ ext{with} \ \ \sigma \stackrel{T_{\varepsilon}}{\mapsto} Z rac{\varepsilon^2+\sigma}{1+\sigma}$$

The MC $\sigma_1, \sigma_2, \ldots$ on $(0, \infty)$ defined by

$$\sigma_{n+1} = T_{\varepsilon}(\sigma_n), \quad \text{with} \quad T_{\varepsilon}(\sigma) = Z \frac{\varepsilon^2 + \sigma}{1 + \sigma}$$

is very well behaved under mild hypotheses on Z (positive recurrent).

The MC $\sigma_1, \sigma_2, \ldots$ on $(0, \infty)$ defined by

$$\sigma_{n+1} = T_{\varepsilon}(\sigma_n), \quad \text{with} \quad T_{\varepsilon}(\sigma) = Z \frac{\varepsilon^2 + \sigma}{1 + \sigma}$$

is very well behaved under mild hypotheses on Z (positive recurrent).

Natural: $\varepsilon \searrow 0$ limit of T_{ε} and

$$T_0(\sigma) = Z \frac{\sigma}{1+\sigma} \le Z\sigma$$

The MC $\sigma_1, \sigma_2, \ldots$ on $(0, \infty)$ defined by

$$\sigma_{n+1} = T_{\varepsilon}(\sigma_n), \quad \text{with} \quad T_{\varepsilon}(\sigma) = Z \frac{\varepsilon^2 + \sigma}{1 + \sigma}$$

is very well behaved under mild hypotheses on Z (positive recurrent).

Natural: $\varepsilon \setminus 0$ limit of T_{ε} and

$$T_0(\sigma) = Z \frac{\sigma}{1+\sigma} \le Z\sigma$$

which proves that the only invariant probability for $\varepsilon = 0$ and $\alpha > 0$ is δ_0 :

$$\mathbb{E}\log Z < 0 \implies \prod_{j=1}^{\infty} Z_j \stackrel{\text{a.s.}}{=} 0$$

and actually implies that $m_{arepsilon}\Longrightarrow\delta_{0}$

The MC $\sigma_1, \sigma_2, \ldots$ on $(0, \infty)$ defined by

$$\sigma_{n+1} = T_{\varepsilon}(\sigma_n), \quad \text{with} \quad T_{\varepsilon}(\sigma) = Z \frac{\varepsilon^2 + \sigma}{1 + \sigma}$$

is very well behaved under mild hypotheses on Z (positive recurrent).

Natural: $\varepsilon \setminus 0$ limit of T_{ε} and

$$T_0(\sigma) = Z \frac{\sigma}{1+\sigma} \le Z\sigma$$

which proves that the only invariant probability for $\varepsilon = 0$ and $\alpha > 0$ is δ_0 :

$$\mathbb{E}\log Z<0\implies\prod_{j=1}^{\infty}Z_j\stackrel{\mathrm{a.s.}}{=}0$$

and actually implies that $m_{arepsilon}\Longrightarrow\delta_0$ and from this, by recalling

$$\mathcal{L}(arepsilon) = \int_0^\infty \log\left(1+\sigma\right) m_{arepsilon}(\,\mathrm{d}\sigma),$$

one can extract $\mathcal{L}(\varepsilon) \longrightarrow 0$.

The MC $\sigma_1, \sigma_2, \ldots$ on $(0, \infty)$ defined by

$$\sigma_{n+1} = T_{\varepsilon}(\sigma_n), \quad \text{with} \quad T_{\varepsilon}(\sigma) = Z \frac{\varepsilon^2 + \sigma}{1 + \sigma}$$

is very well behaved under mild hypotheses on Z (positive recurrent).

Natural: $\varepsilon \setminus 0$ limit of T_{ε} and

$$T_0(\sigma) = Z \frac{\sigma}{1+\sigma} \le Z\sigma$$

which proves that the only invariant probability for $\varepsilon=0$ and $\alpha>0$ is δ_0 :

$$\mathbb{E} \log Z < 0 \implies \prod_{j=1}^{\infty} Z_j \stackrel{\text{a.s.}}{=} 0$$

and actually implies that $m_{arepsilon}\Longrightarrow\delta_0$ and from this, by recalling

$$\mathcal{L}(arepsilon) = \int_0^\infty \log\left(1+\sigma\right) m_{arepsilon}(\,\mathrm{d}\sigma),$$

one can extract $\mathcal{L}(\varepsilon) \longrightarrow 0$. Not enough!

A two scale analysis ($\mathbb{E} \log Z < 0$):

• Regime I (away from 0): the random transformation is

$$T_{arepsilon}(\sigma) = Z rac{arepsilon^2 + \sigma}{1 + \sigma}$$
 with limit $T_0(\sigma) = Z rac{\sigma}{1 + \sigma}$

trouble is that the invariant probability degenerate to δ_0 for $\varepsilon \searrow 0$.

A two scale analysis ($\mathbb{E} \log Z < 0$):

• Regime I (away from 0): the random transformation is

$$T_{arepsilon}(\sigma) = Z rac{arepsilon^2 + \sigma}{1 + \sigma}$$
 with limit $T_0(\sigma) = Z rac{\sigma}{1 + \sigma}$

trouble is that the invariant probability degenerate to δ_0 for $\varepsilon \searrow 0$. But T_0 has also another non normalizable invariant density (non integrability due to singularity at the origin)

A two scale analysis ($\mathbb{E} \log Z < 0$):

• Regime I (away from 0): the random transformation is

$$T_{arepsilon}(\sigma) = Z rac{arepsilon^2 + \sigma}{1 + \sigma}$$
 with limit $T_0(\sigma) = Z rac{\sigma}{1 + \sigma}$

trouble is that the invariant probability degenerate to δ_0 for $\varepsilon \searrow 0$. But T_0 has also another non normalizable invariant density (non integrability due to singularity at the origin)

• Regime II (ε^2 neighborhood of the origin). Change of variable $\sigma = \varepsilon^2 s$, so the random tranformation becomes

$$\widetilde{T}_{arepsilon}(s) = Z rac{1+s}{1+arepsilon^2 s} ext{ and } \widetilde{T}_0(s) = Z(1+s)$$

and \widetilde{T}_0 has a unique invariant probability (density).

A two scale analysis ($\mathbb{E} \log Z < 0$):

• Regime I (away from 0): the random transformation is

$$T_{arepsilon}(\sigma) = Z rac{arepsilon^2 + \sigma}{1 + \sigma}$$
 with limit $T_0(\sigma) = Z rac{\sigma}{1 + \sigma}$

trouble is that the invariant probability degenerate to δ_0 for $\varepsilon \searrow 0$. But T_0 has also another non normalizable invariant density (non integrability due to singularity at the origin)

• Regime II (ε^2 neighborhood of the origin). Change of variable $\sigma = \varepsilon^2 s$, so the random tranformation becomes

$$\widetilde{T}_{arepsilon}(s) = Z rac{1+s}{1+arepsilon^2 s} ext{ and } \widetilde{T}_0(s) = Z(1+s)$$

and \widetilde{T}_0 has a unique invariant probability (density).

DH83: piece together these two solutions, normalize, and compute!

Two main problems:

Two main problems:

① Technical: building the guess probability γ_{ε} (needs sharp asymptotic properties of the invariant densities in the two regimes.

Two main problems:

- Technical: building the guess probability γ_{ε} (needs sharp asymptotic properties of the invariant densities in the two regimes.
- More substantial: the probability provided by [DH83] is not the the invariant probability! Is it close to it? In which sense?

Two main problems:

- Technical: building the guess probability γ_{ε} (needs sharp asymptotic properties of the invariant densities in the two regimes.
- More substantial: the probability provided by [DH83] is not the the invariant probability! Is it close to it? In which sense?

In [GGG17] we introduced a family of norms $\|\cdot\|_{\beta}$ with the property that if ν_1 and ν_2 are probabilities then

$$\|\|T_{\varepsilon}(\nu_1 - \nu_2)\|_{\beta} \le q_{\beta} \|\|\nu_1 - \nu_2\|_{\beta} \quad ext{ with } q_{\beta} = \mathbb{E}[Z^{\beta}] < 1$$
 for $\beta \in (0, \alpha)$.

Two main problems:

- Technical: building the guess probability γ_{ε} (needs sharp asymptotic properties of the invariant densities in the two regimes.
- More substantial: the probability provided by [DH83] is not the the invariant probability! Is it close to it? In which sense?

In [GGG17] we introduced a family of norms $\|\cdot\|_{\beta}$ with the property that if ν_1 and ν_2 are probabilities then

$$\|\|T_{arepsilon}(
u_1-
u_2)\|_{eta} \leq q_{eta}\|\|
u_1-
u_2\|\|_{eta} \quad ext{with } q_{eta}=\mathbb{E}[Z^{eta}]<1$$

for $\beta \in (0, \alpha)$. So $(m_{\varepsilon} \text{ invariant, } \gamma_{\varepsilon} \text{ the guess})$

$$|||m_{\varepsilon} - \gamma_{\varepsilon}||_{\beta} = |||T_{\varepsilon}m_{\varepsilon} - \gamma_{\varepsilon}||_{\beta} \leq |||T_{\varepsilon}(m_{\varepsilon} - \gamma_{\varepsilon})||_{\beta} + |||T_{\varepsilon}\gamma_{\varepsilon} - \gamma_{\varepsilon}||_{\beta}$$
$$\leq q_{\beta}||m_{\varepsilon} - \gamma_{\varepsilon}||_{\beta} + |||T_{\varepsilon}\gamma_{\varepsilon} - \gamma_{\varepsilon}||_{\beta}$$

Two main problems:

- Technical: building the guess probability γ_{ε} (needs sharp asymptotic properties of the invariant densities in the two regimes.
- More substantial: the probability provided by [DH83] is not the the invariant probability! Is it close to it? In which sense?

In [GGG17] we introduced a family of norms $\|\cdot\|_{\beta}$ with the property that if ν_1 and ν_2 are probabilities then

$$\|\|T_{arepsilon}(
u_1-
u_2)\|_{eta} \leq q_{eta}\|\|
u_1-
u_2\|\|_{eta} \quad ext{with } q_{eta}=\mathbb{E}[Z^{eta}]<1$$

for $\beta \in (0, \alpha)$. So $(m_{\varepsilon} \text{ invariant, } \gamma_{\varepsilon} \text{ the guess})$

$$\||m_{\varepsilon} - \gamma_{\varepsilon}||_{\beta} = \||T_{\varepsilon}m_{\varepsilon} - \gamma_{\varepsilon}||_{\beta} \leq \||T_{\varepsilon}(m_{\varepsilon} - \gamma_{\varepsilon})||_{\beta} + \||T_{\varepsilon}\gamma_{\varepsilon} - \gamma_{\varepsilon}||_{\beta}$$
$$\leq q_{\beta} \||m_{\varepsilon} - \gamma_{\varepsilon}||_{\beta} + \||T_{\varepsilon}\gamma_{\varepsilon} - \gamma_{\varepsilon}||_{\beta}$$

Hence

$$|||m_{\varepsilon} - \gamma_{\varepsilon}||_{\beta} \le c_{\beta} |||T_{\varepsilon}\gamma_{\varepsilon} - \gamma_{\varepsilon}||_{\beta} \qquad (c_{\beta} = (1 - q_{\beta})^{-1})$$

 $\| \cdot \|_0$ is well defined, actually for m_1 and m_2 a probabilities

$$|||m_1 - m_2||_0 = \int_0^\infty |G_{m_1}(t) - G_{m_2}(t)| \frac{\mathrm{d}t}{t}$$

with $G_m(t) = \int_{(t,\infty)} m(dt)$.

 $\|\cdot\|_0$ is well defined, actually for m_1 and m_2 a probabilities

$$|||m_1 - m_2||_0 = \int_0^\infty |G_{m_1}(t) - G_{m_2}(t)| \frac{\mathrm{d}t}{t}$$

with $G_m(t) = \int_{(t,\infty)} m(dt)$.

Problem is: the contractive constant $q_0 = \mathbb{E}[Z^0] = 1$ and $c_0 = \infty!$

 $\|\cdot\|_0$ is well defined, actually for m_1 and m_2 a probabilities

$$|||m_1 - m_2||_0 = \int_0^\infty |G_{m_1}(t) - G_{m_2}(t)| \frac{\mathrm{d}t}{t}$$

with $G_m(t) = \int_{(t,\infty)} m(dt)$.

Problem is: the contractive constant $q_0 = \mathbb{E}[Z^0] = 1$ and $c_0 = \infty!$

Change of variables (and perspective): work with $X_j := \log \sigma_j \in \mathbb{R}$, so $X_{j+1} = \log Z_j + f_{\varepsilon}(X_j)$ with

$$f_{\varepsilon}: x \mapsto x + \log Z + \log \left(\frac{1 + \varepsilon e^{-x}}{1 + \varepsilon e^{x}}\right)$$

New Markov process on \mathbb{R} : $X_{j+1} = \log Z_j + f_{\varepsilon}(X_j)$ with

$$f_{\varepsilon}: x \mapsto x + \log Z + \log \left(\frac{1 + \varepsilon e^{-x}}{1 + \varepsilon e^{x}}\right)$$

So (X_j) is a walk with centered increments on which a strong repulsion acts when it attempts leaving $[\log \varepsilon, -\log \varepsilon]$.

First approximation

$$\gamma_{\varepsilon}(x) \stackrel{?}{=} \frac{1}{2\log(1/\varepsilon)} \mathbf{1}_{[\log \varepsilon, \log(1/\varepsilon)]}(x)$$

tuns out to be too poor.

First approximation

$$\gamma_{\varepsilon}(x) \stackrel{?}{=} \frac{1}{2\log(1/\varepsilon)} \mathbf{1}_{[\log \varepsilon, \log(1/\varepsilon)]}(x)$$

tuns out to be too poor.

Recenter the process on $\log \varepsilon$ and on $-\log \varepsilon$ (qualitatively symmetric problems): the $\varepsilon \searrow 0$ Markov chain is a well known walk with one barrier key tool in the analysis of the Sinai RWRE [Kesten, Kozlov, Spitzer,...] (much studied also as critical case of random affine iterations [Babillot, Bougerol, Elie, Brofferio, Buraczewski, Damek]). The one barrier walk is a null recurrent processes.

First approximation

$$\gamma_{\varepsilon}(x) \stackrel{?}{=} \frac{1}{2\log(1/\varepsilon)} \mathbf{1}_{[\log \varepsilon, \log(1/\varepsilon)]}(x)$$

tuns out to be too poor.

Recenter the process on $\log \varepsilon$ and on $-\log \varepsilon$ (qualitatively symmetric problems): the $\varepsilon \searrow 0$ Markov chain is a well known walk with one barrier key tool in the analysis of the Sinai RWRE [Kesten, Kozlov, Spitzer,...] (much studied also as critical case of random affine iterations [Babillot, Bougerol, Elie, Brofferio, Buraczewski, Damek]). The one barrier walk is a null recurrent processes.

We can actually do

$$|||T_{\varepsilon}\gamma_{\varepsilon}-\gamma_{\varepsilon}||_{0}=O\left(\varepsilon^{a}\right)$$

for an a > 0. Useful?

We can actually do

$$|||T_{\varepsilon}\gamma_{\varepsilon}-\gamma_{\varepsilon}||_{0}=O\left(\varepsilon^{a}\right)$$

for an a > 0. Useful?

We still need to circumvent the lack of contraction.

We can actually do

$$|||T_{\varepsilon}\gamma_{\varepsilon}-\gamma_{\varepsilon}||_{0}=O\left(\varepsilon^{a}\right)$$

for an a > 0. Useful?

We still need to circumvent the lack of contraction.

Recover a *micro-contraction* by exploiting the structure of the (X_j) process at $\varepsilon > 0$: we show that for c > 2

$$|||m_{\varepsilon} - \gamma_{\varepsilon}|||_{0} \leq (\log(1/\varepsilon))^{c} |||T_{\varepsilon}\gamma_{\varepsilon} - \gamma_{\varepsilon}|||_{0} = O\left((\log(1/\varepsilon))^{c}\varepsilon^{a}\right)$$

which largely suffices.

Conclusions and perspectives

 Class of matrices is very specialized, but in reality via conjugations etc... we can reach a class of matrices that is (or appears to be) much larger.

Conclusions and perspectives

- Class of matrices is very specialized, but in reality via conjugations etc... we can reach a class of matrices that is (or appears to be) much larger.
- Lots of room in the last estimate... and the result itself

$$\mathcal{L}(\varepsilon) = \frac{\kappa_1}{\log(1/\varepsilon)} \sum_{j=0}^{\infty} \left(\frac{-\kappa_2}{\log(1/\varepsilon)} \right)^j + O(\varepsilon^a)$$

is not the minimal result one is after.

Conclusions and perspectives

- Class of matrices is very specialized, but in reality via conjugations etc... we can reach a class of matrices that is (or appears to be) much larger.
- Lots of room in the last estimate... and the result itself

$$\mathcal{L}(\varepsilon) = \frac{\kappa_1}{\log(1/\varepsilon)} \sum_{j=0}^{\infty} \left(\frac{-\kappa_2}{\log(1/\varepsilon)}\right)^j + O\left(\varepsilon^{\mathsf{a}}\right)$$

is not the minimal result one is after.

• Expected (?) that

$$\mathcal{L}(arepsilon) \sim rac{\kappa_1}{\log(1/arepsilon)}$$

holds under much weaker conditions (e.g., support of Z spans $(0,\infty)$?) However our tools really do not get there: difficulties both in building γ_{ε} and showing that it is close to m_{ε} .