Products of random matrices and the statistical mechanics of disordered systems

Giambattista Giacomin

Université de Paris and Laboratoire Probabilités, Statistique et Modélisation

October $21^{\text {st }} 2021$

Straight to the main issue

To be very concrete:
the talk is about the product of IID random matrices

$$
M_{n}^{\varepsilon}:=\left(\begin{array}{cc}
1 & \varepsilon \\
\varepsilon Z_{n} & Z_{n}
\end{array}\right)
$$

where $\varepsilon \in(-1,1)$ and $\left\{Z_{n}\right\}_{n=1,2, \ldots}$ is an IID sequence of positive random variables with $\log Z_{1} \in L^{1}$.

Straight to the main issue

To be very concrete:
the talk is about the product of IID random matrices

$$
M_{n}^{\varepsilon}:=\left(\begin{array}{cc}
1 & \varepsilon \\
\varepsilon Z_{n} & Z_{n}
\end{array}\right)
$$

where $\varepsilon \in(-1,1)$ and $\left\{Z_{n}\right\}_{n=1,2, \ldots}$ is an IID sequence of positive random variables with $\log Z_{1} \in L^{1}$.

More precisely we aim at the $\varepsilon \rightarrow 0$ behavior of the Lyapunov exponent

$$
\mathcal{L}(\varepsilon):=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E} \log \left\|M_{n}^{\varepsilon} M_{n-1}^{\varepsilon} \cdots M_{1}^{\varepsilon}\right\|
$$

where $\|\cdot\|$ is an arbitrary matrix norm.

Straight to the main issue

To be very concrete:
the talk is about the product of IID random matrices

$$
M_{n}^{\varepsilon}:=\left(\begin{array}{cc}
1 & \varepsilon \\
\varepsilon Z_{n} & Z_{n}
\end{array}\right)
$$

where $\varepsilon \in(-1,1)$ and $\left\{Z_{n}\right\}_{n=1,2, \ldots}$ is an IID sequence of positive random variables with $\log Z_{1} \in L^{1}$.

More precisely we aim at the $\varepsilon \rightarrow 0$ behavior of the Lyapunov exponent

$$
\mathcal{L}(\varepsilon):=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E} \log \left\|M_{n}^{\varepsilon} M_{n-1}^{\varepsilon} \cdots M_{1}^{\varepsilon}\right\|
$$

where $\|\cdot\|$ is an arbitrary matrix norm.
Simple exercise: $\mathcal{L}(0)=\max (0, \mathbb{E} \log Z)$, but $\varepsilon=0$ looks pathological...

Statistical mechanics origin of the question

Key reference for us

[DH83] B. Derrida and H. J. Hilhorst
Singular behaviour of certain infinite products of random 2×2 matrices J. Phys. A, 16(12):2641-2654, 1983.

Statistical mechanics origin of the question

Key reference for us
[DH83] B. Derrida and H. J. HilhorstSingular behaviour of certain infinite products of random 2×2 matricesJ. Phys. A, 16(12):2641-2654, 1983.
\hookrightarrow In particular [DH83] contains several statistical mechanics examples in which this matrix product/lyapunov exponent comes up.

Statistical mechanics origin of the question

Key reference for us
[DH83] B. Derrida and H. J. HilhorstSingular behaviour of certain infinite products of random 2×2 matricesJ. Phys. A, 16(12):2641-2654, 1983.
\hookrightarrow In particular [DH83] contains several statistical mechanics examples in which this matrix product/lyapunov exponent comes up.
\hookrightarrow For the statmech framework: also Crisanti, Paladin, Vulpiani Products of random matrices in statistical physics, 1993

Statistical mechanics origin of the question

Key reference for us
[DH83] B. Derrida and H. J. HilhorstSingular behaviour of certain infinite products of random 2×2 matricesJ. Phys. A, 16(12):2641-2654, 1983.
\hookrightarrow In particular [DH83] contains several statistical mechanics examples in which this matrix product/lyapunov exponent comes up.
\hookrightarrow For the statmech framework: also Crisanti, Paladin, Vulpiani Products of random matrices in statistical physics, 1993
\hookrightarrow As it will be clear, we exploit [DH83] well beyond extracting from it the statmech motivation

Statistical mechanics origin of the question

Ising model with disordered external field: $d=1,\left\{h_{j}\right\}_{j=1,2, \ldots}$ IID

$$
\mathcal{H}_{N}(\sigma):=-J \sum_{i=1}^{N} \sigma_{i} \sigma_{i+1}-\sum_{i=1}^{N} h_{i} \sigma_{i}
$$

Statistical mechanics origin of the question

Ising model with disordered external field: $d=1,\left\{h_{j}\right\}_{j=1,2, \ldots}$ IID

$$
\mathcal{H}_{N}(\sigma):=-J \sum_{i=1}^{N} \sigma_{i} \sigma_{i+1}-\sum_{i=1}^{N} h_{i} \sigma_{i}
$$

The Gibbs measure $\exp \left(-\mathcal{H}_{N}(\sigma)\right) / \mathcal{Z}_{N}$ with

$$
\mathcal{Z}_{N}=\exp \left(\sum_{i=1}^{N} h_{i}+N J\right) \operatorname{Tr} \prod_{i=1}^{N}\left(\begin{array}{cc}
1 & e^{-2 J} \\
e^{-2 J} e^{-2 h_{i}} & e^{-2 h_{i}}
\end{array}\right)
$$

and the matrix is of the desired form ($\varepsilon=e^{-2 J}$ and $\left.Z_{i}=e^{-2 h_{i}}\right)$ and the free energy density is the leading Lyapunov exponent apart for a trivial additive constant.

Statistical mechanics origin of the question

Ising model with disordered external field: $d=1,\left\{h_{j}\right\}_{j=1,2, \ldots}$ IID

$$
\mathcal{H}_{N}(\sigma):=-J \sum_{i=1}^{N} \sigma_{i} \sigma_{i+1}-\sum_{i=1}^{N} h_{i} \sigma_{i}
$$

The Gibbs measure $\exp \left(-\mathcal{H}_{N}(\sigma)\right) / \mathcal{Z}_{N}$ with

$$
\mathcal{Z}_{N}=\exp \left(\sum_{i=1}^{N} h_{i}+N J\right) \operatorname{Tr} \prod_{i=1}^{N}\left(\begin{array}{cc}
1 & e^{-2 J} \\
e^{-2 J} e^{-2 h_{i}} & e^{-2 h_{i}}
\end{array}\right)
$$

and the matrix is of the desired form ($\varepsilon=e^{-2 J}$ and $\left.Z_{i}=e^{-2 h_{i}}\right)$ and the free energy density is the leading Lyapunov exponent apart for a trivial additive constant.

The $\varepsilon \searrow 0$ limit corresponds to the fixed disorder - strong ferromagnetic interaction limit.

Statistical mechanics origin of the question

- nearest neighbor Isind \mathbb{Z}^{2} with columnar disorder: Onsager solution is robust to introduction of 1d disorder and the free energy can be expressed in term of the Lyapunov exponent of transfer matrices of 1d models.

Statistical mechanics origin of the question

- nearest neighbor Isind \mathbb{Z}^{2} with columnar disorder: Onsager solution is robust to introduction of 1d disorder and the free energy can be expressed in term of the Lyapunov exponent of transfer matrices of 1d models.
- Quantum Ising chain with disordered external field and/or disordered interactions: mapping with Ising 2 d with columnar disorder.

Statistical mechanics origin of the question

- nearest neighbor Isind \mathbb{Z}^{2} with columnar disorder: Onsager solution is robust to introduction of 1d disorder and the free energy can be expressed in term of the Lyapunov exponent of transfer matrices of 1d models.
- Quantum Ising chain with disordered external field and/or disordered interactions: mapping with Ising 2 d with columnar disorder.
- Prototype for general models with $1 d$ disorder: $\mathbb{P}(Z>1)>0$ and $\mathbb{P}(Z<1)>0$ is the signature of frustration.

Toward the result

Fundamental quantities

$$
\mathcal{L}(\varepsilon):=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E} \log \left\|M_{n}^{\varepsilon} M_{n-1}^{\varepsilon} \cdots M_{1}^{\varepsilon}\right\| \quad \text { with } M_{j}^{\varepsilon}:=\left(\begin{array}{cc}
1 & \varepsilon \\
\varepsilon Z_{j} & Z_{j}
\end{array}\right)
$$

where $|\varepsilon| \in(0,1)$ and $\left(Z_{j}\right)_{j=1,2, \ldots}$ IID sequence of positive r.v.'s.

Toward the result

Fundamental quantities

$$
\mathcal{L}(\varepsilon):=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E} \log \left\|M_{n}^{\varepsilon} M_{n-1}^{\varepsilon} \cdots M_{1}^{\varepsilon}\right\| \quad \text { with } M_{j}^{\varepsilon}:=\left(\begin{array}{cc}
1 & \varepsilon \\
\varepsilon Z_{j} & Z_{j}
\end{array}\right)
$$

where $|\varepsilon| \in(0,1)$ and $\left(Z_{j}\right)_{j=1,2, \ldots}$ IID sequence of positive r.v.'s.
Existence of the limit and a number of facts like for example

$$
\mathcal{L}(\varepsilon)=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E} \log \left(M_{n}^{\varepsilon} M_{n-1}^{\varepsilon} \cdots M_{1}^{\varepsilon}\right)_{1,1}
$$

are standard (under $\mathbb{E}|\log Z|<\infty$): Furstenberg, Kesten, Kingman...

Toward the result

Fundamental quantities

$$
\mathcal{L}(\varepsilon):=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E} \log \left\|M_{n}^{\varepsilon} M_{n-1}^{\varepsilon} \cdots M_{1}^{\varepsilon}\right\| \quad \text { with } M_{j}^{\varepsilon}:=\left(\begin{array}{cc}
1 & \varepsilon \\
\varepsilon Z_{j} & Z_{j}
\end{array}\right)
$$

where $|\varepsilon| \in(0,1)$ and $\left(Z_{j}\right)_{j=1,2, \ldots}$ IID sequence of positive r.v.'s.
Existence of the limit and a number of facts like for example

$$
\mathcal{L}(\varepsilon)=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E} \log \left(M_{n}^{\varepsilon} M_{n-1}^{\varepsilon} \cdots M_{1}^{\varepsilon}\right)_{1,1}
$$

are standard (under $\mathbb{E}|\log Z|<\infty$): Furstenberg, Kesten, Kingman...
Other (elementary) facts: $\mathcal{L}(\varepsilon)=\mathcal{L}(-\varepsilon)$ and $\mathcal{L}(0)=\max (0, \mathbb{E} \log Z)$.

Toward the result

Fundamental quantities

$$
\mathcal{L}(\varepsilon):=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E} \log \left\|M_{n}^{\varepsilon} M_{n-1}^{\varepsilon} \cdots M_{1}^{\varepsilon}\right\| \quad \text { with } M_{j}^{\varepsilon}:=\left(\begin{array}{cc}
1 & \varepsilon \\
\varepsilon Z_{j} & Z_{j}
\end{array}\right)
$$

where $|\varepsilon| \in(0,1)$ and $\left(Z_{j}\right)_{j=1,2, \ldots}$ IID sequence of positive r.v.'s.
Existence of the limit and a number of facts like for example

$$
\mathcal{L}(\varepsilon)=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E} \log \left(M_{n}^{\varepsilon} M_{n-1}^{\varepsilon} \cdots M_{1}^{\varepsilon}\right)_{1,1}
$$

are standard (under $\mathbb{E}|\log Z|<\infty$): Furstenberg, Kesten, Kingman... Other (elementary) facts: $\mathcal{L}(\varepsilon)=\mathcal{L}(-\varepsilon)$ and $\mathcal{L}(0)=\max (0, \mathbb{E} \log Z)$. Case $\varepsilon=0$ dynamically different

Toward the result

Fundamental quantities

$$
\mathcal{L}(\varepsilon):=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E} \log \left\|M_{n}^{\varepsilon} M_{n-1}^{\varepsilon} \cdots M_{1}^{\varepsilon}\right\| \quad \text { with } M_{j}^{\varepsilon}:=\left(\begin{array}{cc}
1 & \varepsilon \\
\varepsilon Z_{j} & Z_{j}
\end{array}\right)
$$

where $|\varepsilon| \in(0,1)$ and $\left(Z_{j}\right)_{j=1,2, \ldots}$ IID sequence of positive r.v.'s.
Existence of the limit and a number of facts like for example

$$
\mathcal{L}(\varepsilon)=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E} \log \left(M_{n}^{\varepsilon} M_{n-1}^{\varepsilon} \cdots M_{1}^{\varepsilon}\right)_{1,1}
$$

are standard (under $\mathbb{E}|\log Z|<\infty$): Furstenberg, Kesten, Kingman... Other (elementary) facts: $\mathcal{L}(\varepsilon)=\mathcal{L}(-\varepsilon)$ and $\mathcal{L}(0)=\max (0, \mathbb{E} \log Z)$. Case $\varepsilon=0$ dynamically different Important results: [Ruelle 79] $\mathcal{L}(\cdot)$ is analytic on $(-1,1) \backslash\{0\}$ and [Le Page 89] $\mathcal{L}(\cdot)$ is Hölder C^{0} on $(-1,1)$ if $\mathbb{E}[\log Z] \neq 0$.

Toward the result

[DH83]: prediction about behavior of $\mathcal{L}(\varepsilon)$ for $\varepsilon \rightarrow 0$.

Toward the result

[DH83]: prediction about behavior of $\mathcal{L}(\varepsilon)$ for $\varepsilon \rightarrow 0$. Key: the convex function $\beta \longrightarrow \mathbb{E} Z^{\beta}$ (derivative in 0 is $\mathbb{E} \log Z$)

Toward the result

[DH83]: prediction about behavior of $\mathcal{L}(\varepsilon)$ for $\varepsilon \rightarrow 0$.
Key: the convex function $\beta \longrightarrow \mathbb{E} Z^{\beta}$ (derivative in 0 is $\mathbb{E} \log Z$)

Toward the result

[DH83]: prediction about behavior of $\mathcal{L}(\varepsilon)$ for $\varepsilon \rightarrow 0$.
Key: the convex function $\beta \longrightarrow \mathbb{E} Z^{\beta}$ (derivative in 0 is $\mathbb{E} \log Z$)

$\alpha \in \mathbb{R}$ (or may not exist) but case $\alpha \leq 0$ is equivalent to $\alpha \geq 0$:

$$
\left(\begin{array}{cc}
1 & \varepsilon \\
\varepsilon Z & Z
\end{array}\right)=Z\left(\begin{array}{cc}
1 / Z & \varepsilon / Z \\
\varepsilon & 1
\end{array}\right)
$$

Expected results (mostly [DH83])

For $\varepsilon \rightarrow 0$:

- If $\alpha \in(0,1)$ then

$$
\mathcal{L}(\varepsilon) \sim C|\varepsilon|^{2 \alpha},
$$

with $C>0$ semi-explicit.

Expected results (mostly [DH83])

For $\varepsilon \rightarrow 0$:

- If $\alpha \in(0,1)$ then

$$
\mathcal{L}(\varepsilon) \sim C|\varepsilon|^{2 \alpha}
$$

with $C>0$ semi-explicit.

- If $\alpha \in[1, \infty) \backslash \mathbb{N}$

$$
\mathcal{L}(\varepsilon)=c_{1} \varepsilon^{2}+\ldots+c_{\lfloor\alpha\rfloor} \varepsilon^{2\lfloor\alpha\rfloor}+C|\varepsilon|^{2 \alpha}+o\left(|\varepsilon|^{2 \alpha}\right)
$$

with explicit c_{j} 's (but not C)

Expected results (mostly [DH83])

For $\varepsilon \rightarrow 0$:

- If $\alpha \in(0,1)$ then

$$
\mathcal{L}(\varepsilon) \sim C|\varepsilon|^{2 \alpha}
$$

with $C>0$ semi-explicit.

- If $\alpha \in[1, \infty) \backslash \mathbb{N}$

$$
\mathcal{L}(\varepsilon)=c_{1} \varepsilon^{2}+\ldots+c_{\lfloor\alpha\rfloor} \varepsilon^{2\lfloor\alpha\rfloor}+C|\varepsilon|^{2 \alpha}+o\left(|\varepsilon|^{2 \alpha}\right)
$$

with explicit c_{j} 's (but not C)

- If $\alpha=0$ (i.e. $\mathbb{E}[\log Z]=0$) [Nieuwenhuizen, Luck 86], [Derrida]

$$
\mathcal{L}(\varepsilon) \sim \frac{C}{\log (1 /|\varepsilon|)}
$$

Expected results (mostly [DH83])

For $\varepsilon \rightarrow 0$:

- If $\alpha \in(0,1)$ then

$$
\mathcal{L}(\varepsilon) \sim C|\varepsilon|^{2 \alpha}
$$

with $C>0$ semi-explicit.

- If $\alpha \in[1, \infty) \backslash \mathbb{N}$

$$
\mathcal{L}(\varepsilon)=c_{1} \varepsilon^{2}+\ldots+c_{\lfloor\alpha\rfloor} \varepsilon^{2\lfloor\alpha\rfloor}+C|\varepsilon|^{2 \alpha}+o\left(|\varepsilon|^{2 \alpha}\right)
$$

with explicit c_{j} 's (but not C)

- If $\alpha=0$ (i.e. $\mathbb{E}[\log Z]=0$) [Nieuwenhuizen, Luck 86], [Derrida]

$$
\mathcal{L}(\varepsilon) \sim \frac{C}{\log (1 /|\varepsilon|)}
$$

Need conditions[DH83]: example of $Z \in\{0, z\}$ such that $\mathcal{L}(\varepsilon) \sim H\left(\log (1 /|\varepsilon|)|\varepsilon|^{2 \alpha}\right.$, with $H(\cdot)$ periodic.

Mathematical results

Theorem (Genovese, G., Greenblatt 2017)

Assume $\alpha \in(0,1)$ and
(1) the support of the law of Z is bounded and bounded away from zero
(2) Z has a C^{1} density.

Then there exists $C>0$ (DH83 expression) and $\varkappa>0$ (explicit) s.t.

$$
\mathcal{L}(\varepsilon)=C \varepsilon^{2 \alpha}+O\left(\varepsilon^{2 \alpha+\varkappa}\right)
$$

Mathematical results

Theorem (Genovese, G., Greenblatt 2017)

Assume $\alpha \in(0,1)$ and

(1) the support of the law of Z is bounded and bounded away from zero
(2) Z has a C^{1} density.

Then there exists $C>0$ (DH83 expression) and $\varkappa>0$ (explicit) s.t.

$$
\mathcal{L}(\varepsilon)=C \varepsilon^{2 \alpha}+O\left(\varepsilon^{2 \alpha+\varkappa}\right)
$$

Theorem (Havret 2020)

Assume $\alpha \geq 1$ and other mild conditions on Z. Then

$$
\mathcal{L}(\varepsilon)=c_{1} \varepsilon^{2}+\ldots+c_{\lfloor\alpha\rfloor} \varepsilon^{2\lfloor\alpha\rfloor}+\operatorname{Rest}(\varepsilon)
$$

with upper and lower bounds on $\operatorname{Rest}(\varepsilon)=o\left(\varepsilon^{2\lfloor\alpha\rfloor}\right)$

Mathematical results

Theorem (G. and Greenblatt 2021)

Assume $\alpha=0$ and

- $\mathbb{E}\left[Z^{\delta}\right]<\infty$ for δ in neighborhood of 0 ;
- Z has a density and the density of $\log Z$ is uniformly Hölder C^{0}.

Then there exist $\kappa_{1}>0, \kappa_{2} \in \mathbb{R}$ and $\eta \in(0,1)$ such that, for $\varepsilon \rightarrow 0$,

$$
\mathcal{L}(\varepsilon)=\frac{\kappa_{1}}{\log (1 /|\varepsilon|)+\kappa_{2}}+O\left(|\varepsilon|^{\eta}\right)
$$

Mathematical results

Theorem (G. and Greenblatt 2021)

Assume $\alpha=0$ and

- $\mathbb{E}\left[Z^{\delta}\right]<\infty$ for δ in neighborhood of 0 ;
- Z has a density and the density of $\log Z$ is uniformly Hölder C^{0}.

Then there exist $\kappa_{1}>0, \kappa_{2} \in \mathbb{R}$ and $\eta \in(0,1)$ such that, for $\varepsilon \rightarrow 0$,

$$
\mathcal{L}(\varepsilon)=\frac{\kappa_{1}}{\log (1 /|\varepsilon|)+\kappa_{2}}+O\left(|\varepsilon|^{\eta}\right) .
$$

- Similar claim in [Nieuwenhuizen, Luck 86] assuming a special choice of law of Z without density, or with discontinuous densities (where one can push certain transform computations).

Mathematical results

Theorem (G. and Greenblatt 2021)

Assume $\alpha=0$ and

- $\mathbb{E}\left[Z^{\delta}\right]<\infty$ for δ in neighborhood of 0 ;
- Z has a density and the density of $\log Z$ is uniformly Hölder C^{0}.

Then there exist $\kappa_{1}>0, \kappa_{2} \in \mathbb{R}$ and $\eta \in(0,1)$ such that, for $\varepsilon \rightarrow 0$,

$$
\mathcal{L}(\varepsilon)=\frac{\kappa_{1}}{\log (1 /|\varepsilon|)+\kappa_{2}}+O\left(|\varepsilon|^{\eta}\right) .
$$

- Similar claim in [Nieuwenhuizen, Luck 86] assuming a special choice of law of Z without density, or with discontinuous densities (where one can push certain transform computations).
- [Derrida, priv. comm.]: [DH83] approach applies.

A formula for $\mathcal{L}(\varepsilon)$

Classical (Furstenberg) representation formula for the Lyapunov exponent in terms of the invariant probability of the Markov chain

$$
\widehat{x}, \widehat{M_{1}^{\varepsilon}} x, \widehat{M_{2}^{\varepsilon} M_{1}^{\varepsilon}} x, \ldots
$$

where $x \in \mathbb{R}^{2}$ (we can choose it in \mathbb{R}_{+}^{2}) and $\hat{x}=x /\|x\|$.

A formula for $\mathcal{L}(\varepsilon)$

Classical (Furstenberg) representation formula for the Lyapunov exponent in terms of the invariant probability of the Markov chain

$$
\widehat{x}, \widehat{M_{1}^{\varepsilon}} x, \widehat{M_{2}^{\varepsilon} M_{1}^{\varepsilon}} x, \ldots
$$

where $x \in \mathbb{R}^{2}$ (we can choose it in \mathbb{R}_{+}^{2}) and $\hat{x}=x /\|x\|$.

A formula for $\mathcal{L}(\varepsilon)$

We compute for $x>0$

$$
\left(\begin{array}{cc}
1 & \varepsilon \\
\varepsilon Z & Z
\end{array}\right)\binom{1}{x}=\binom{1+\varepsilon x}{Z(\varepsilon+x)}
$$

so

$$
\tan (\theta)=x \mapsto \tan \left(\theta^{\prime}\right)=Z \frac{\varepsilon+x}{1+\varepsilon x}=Z \frac{\varepsilon+\tan (\theta)}{1+\varepsilon \tan (\theta)}
$$

A formula for $\mathcal{L}(\varepsilon)$

We compute for $x>0$

$$
\left(\begin{array}{cc}
1 & \varepsilon \\
\varepsilon Z & Z
\end{array}\right)\binom{1}{x}=\binom{1+\varepsilon x}{Z(\varepsilon+x)}
$$

so

$$
\tan (\theta)=x \mapsto \tan \left(\theta^{\prime}\right)=Z \frac{\varepsilon+x}{1+\varepsilon x}=Z \frac{\varepsilon+\tan (\theta)}{1+\varepsilon \tan (\theta)}
$$

and

$$
\mathcal{L}(\varepsilon)=\int_{0}^{\pi / 2} \log (1+\varepsilon \tan \theta) m_{\varepsilon}(\mathrm{d} \theta)
$$

A formula for $\mathcal{L}(\varepsilon)$

We compute for $x>0$

$$
\left(\begin{array}{cc}
1 & \varepsilon \\
\varepsilon Z & Z
\end{array}\right)\binom{1}{x}=\binom{1+\varepsilon x}{Z(\varepsilon+x)}
$$

so

$$
\tan (\theta)=x \mapsto \tan \left(\theta^{\prime}\right)=Z \frac{\varepsilon+x}{1+\varepsilon x}=Z \frac{\varepsilon+\tan (\theta)}{1+\varepsilon \tan (\theta)}
$$

and

$$
\mathcal{L}(\varepsilon)=\int_{0}^{\pi / 2} \log (1+\varepsilon \tan \theta) m_{\varepsilon}(\mathrm{d} \theta)
$$

but we prefer to work with the variable $\sigma=\varepsilon \tan (\theta)$ so

$$
\mathcal{L}(\varepsilon)=\int_{0}^{\infty} \log (1+\sigma) m_{\varepsilon}^{(1)}(\mathrm{d} \sigma) \text { with } \sigma \stackrel{T_{\varepsilon}}{\mapsto} Z \frac{\varepsilon^{2}+\sigma}{1+\sigma}
$$

Can we "find" the invariant probability $m_{\varepsilon}=m_{\varepsilon}^{(1)}$?

The MC $\sigma_{1}, \sigma_{2}, \ldots$ on $(0, \infty)$ defined by

$$
\sigma_{n+1}=T_{\varepsilon}\left(\sigma_{n}\right), \quad \text { with } \quad T_{\varepsilon}(\sigma)=Z \frac{\varepsilon^{2}+\sigma}{1+\sigma}
$$

is very well behaved under mild hypotheses on Z (positive recurrent).

Can we "find" the invariant probability $m_{\varepsilon}=m_{\varepsilon}^{(1)}$?

The MC $\sigma_{1}, \sigma_{2}, \ldots$ on $(0, \infty)$ defined by

$$
\sigma_{n+1}=T_{\varepsilon}\left(\sigma_{n}\right), \quad \text { with } \quad T_{\varepsilon}(\sigma)=Z \frac{\varepsilon^{2}+\sigma}{1+\sigma}
$$

is very well behaved under mild hypotheses on Z (positive recurrent).
Natural: $\varepsilon \searrow 0$ limit of T_{ε} and

$$
T_{0}(\sigma)=Z \frac{\sigma}{1+\sigma} \leq Z \sigma
$$

Can we "find" the invariant probability $m_{\varepsilon}=m_{\varepsilon}^{(1)}$?

The MC $\sigma_{1}, \sigma_{2}, \ldots$ on $(0, \infty)$ defined by

$$
\sigma_{n+1}=T_{\varepsilon}\left(\sigma_{n}\right), \quad \text { with } \quad T_{\varepsilon}(\sigma)=Z \frac{\varepsilon^{2}+\sigma}{1+\sigma}
$$

is very well behaved under mild hypotheses on Z (positive recurrent).
Natural: $\varepsilon \searrow 0$ limit of T_{ε} and

$$
T_{0}(\sigma)=Z \frac{\sigma}{1+\sigma} \leq Z \sigma
$$

which proves that the only invariant probability for $\varepsilon=0$ and $\alpha>0$ is δ_{0} :

$$
\mathbb{E} \log Z<0 \Longrightarrow \prod_{j=1}^{\infty} Z_{j} \stackrel{\text { a.s. }}{=} 0
$$

and actually implies that $m_{\varepsilon} \Longrightarrow \delta_{0}$

Can we "find" the invariant probability $m_{\varepsilon}=m_{\varepsilon}^{(1)}$?

The MC $\sigma_{1}, \sigma_{2}, \ldots$ on $(0, \infty)$ defined by

$$
\sigma_{n+1}=T_{\varepsilon}\left(\sigma_{n}\right), \quad \text { with } \quad T_{\varepsilon}(\sigma)=Z \frac{\varepsilon^{2}+\sigma}{1+\sigma}
$$

is very well behaved under mild hypotheses on Z (positive recurrent).
Natural: $\varepsilon \searrow 0$ limit of T_{ε} and

$$
T_{0}(\sigma)=Z \frac{\sigma}{1+\sigma} \leq Z \sigma
$$

which proves that the only invariant probability for $\varepsilon=0$ and $\alpha>0$ is δ_{0} :

$$
\mathbb{E} \log Z<0 \Longrightarrow \prod_{j=1}^{\infty} Z_{j} \stackrel{\text { a.s. }}{=} 0
$$

and actually implies that $m_{\varepsilon} \Longrightarrow \delta_{0}$ and from this, by recalling

$$
\mathcal{L}(\varepsilon)=\int_{0}^{\infty} \log (1+\sigma) m_{\varepsilon}(\mathrm{d} \sigma)
$$

one can extract $\mathcal{L}(\varepsilon) \longrightarrow 0$.

Can we "find" the invariant probability $m_{\varepsilon}=m_{\varepsilon}^{(1)}$?

The MC $\sigma_{1}, \sigma_{2}, \ldots$ on $(0, \infty)$ defined by

$$
\sigma_{n+1}=T_{\varepsilon}\left(\sigma_{n}\right), \quad \text { with } \quad T_{\varepsilon}(\sigma)=Z \frac{\varepsilon^{2}+\sigma}{1+\sigma}
$$

is very well behaved under mild hypotheses on Z (positive recurrent).
Natural: $\varepsilon \searrow 0$ limit of T_{ε} and

$$
T_{0}(\sigma)=Z \frac{\sigma}{1+\sigma} \leq Z \sigma
$$

which proves that the only invariant probability for $\varepsilon=0$ and $\alpha>0$ is δ_{0} :

$$
\mathbb{E} \log Z<0 \Longrightarrow \prod_{j=1}^{\infty} Z_{j} \stackrel{\text { a.s. }}{=} 0
$$

and actually implies that $m_{\varepsilon} \Longrightarrow \delta_{0}$ and from this, by recalling

$$
\mathcal{L}(\varepsilon)=\int_{0}^{\infty} \log (1+\sigma) m_{\varepsilon}(\mathrm{d} \sigma)
$$

one can extract $\mathcal{L}(\varepsilon) \longrightarrow 0$. Not enough!

The [DH83] idea

A two scale analysis ($\mathbb{E} \log Z<0)$:

- Regime I (away from 0): the random transformation is

$$
T_{\varepsilon}(\sigma)=Z \frac{\varepsilon^{2}+\sigma}{1+\sigma} \text { with limit } T_{0}(\sigma)=Z \frac{\sigma}{1+\sigma}
$$

trouble is that the invariant probability degenerate to δ_{0} for $\varepsilon \searrow 0$.

The [DH83] idea

A two scale analysis ($\mathbb{E} \log Z<0)$:

- Regime I (away from 0): the random transformation is

$$
T_{\varepsilon}(\sigma)=Z \frac{\varepsilon^{2}+\sigma}{1+\sigma} \text { with limit } T_{0}(\sigma)=Z \frac{\sigma}{1+\sigma}
$$

trouble is that the invariant probability degenerate to δ_{0} for $\varepsilon \searrow 0$. But T_{0} has also another non normalizable invariant density (non integrability due to singularity at the origin)

The [DH83] idea

A two scale analysis ($\mathbb{E} \log Z<0)$:

- Regime I (away from 0): the random transformation is

$$
T_{\varepsilon}(\sigma)=Z \frac{\varepsilon^{2}+\sigma}{1+\sigma} \text { with limit } T_{0}(\sigma)=Z \frac{\sigma}{1+\sigma}
$$

trouble is that the invariant probability degenerate to δ_{0} for $\varepsilon \searrow 0$.
But T_{0} has also another non normalizable invariant density (non integrability due to singularity at the origin)

- Regime II (ε^{2} neighborhood of the origin). Change of variable $\sigma=\varepsilon^{2} s$, so the random tranformation becomes

$$
\widetilde{T}_{\varepsilon}(s)=Z \frac{1+s}{1+\varepsilon^{2} s} \text { and } \widetilde{T}_{0}(s)=Z(1+s)
$$

and \widetilde{T}_{0} has a unique invariant probability (density).

The [DH83] idea

A two scale analysis ($\mathbb{E} \log Z<0)$:

- Regime I (away from 0): the random transformation is

$$
T_{\varepsilon}(\sigma)=Z \frac{\varepsilon^{2}+\sigma}{1+\sigma} \text { with limit } T_{0}(\sigma)=Z \frac{\sigma}{1+\sigma}
$$

trouble is that the invariant probability degenerate to δ_{0} for $\varepsilon \searrow 0$.
But T_{0} has also another non normalizable invariant density (non integrability due to singularity at the origin)

- Regime II (ε^{2} neighborhood of the origin). Change of variable $\sigma=\varepsilon^{2} s$, so the random tranformation becomes

$$
\widetilde{T}_{\varepsilon}(s)=Z \frac{1+s}{1+\varepsilon^{2} s} \text { and } \widetilde{T}_{0}(s)=Z(1+s)
$$

and \widetilde{T}_{0} has a unique invariant probability (density).
DH83: piece together these two solutions, normalize, and compute!

How to convert [DH83] into a proof? $\alpha \in(0,1)$

Two main problems:

How to convert [DH83] into a proof? $\alpha \in(0,1)$

Two main problems:
(1) Technical: building the guess probability γ_{ε} (needs sharp asymptotic properties of the invariant densities in the two regimes.

How to convert [DH83] into a proof? $\alpha \in(0,1)$

Two main problems:
(1) Technical: building the guess probability γ_{ε} (needs sharp asymptotic properties of the invariant densities in the two regimes.
(2) More substantial: the probability provided by [DH83] is not the the invariant probability! Is it close to it? In which sense?

How to convert [DH83] into a proof? $\alpha \in(0,1)$

Two main problems:
(1) Technical: building the guess probability γ_{ε} (needs sharp asymptotic properties of the invariant densities in the two regimes.
(2) More substantial: the probability provided by [DH83] is not the the invariant probability! Is it close to it? In which sense?

In [GGG17] we introduced a family of norms $\|\cdot \mid \cdot\|_{\beta}$ with the property that if ν_{1} and ν_{2} are probabilities then

$$
\left\|T_{\varepsilon}\left(\nu_{1}-\nu_{2}\right)\right\|_{\beta} \leq \boldsymbol{q}_{\beta}\left\|\nu_{1}-\nu_{2}\right\|_{\beta} \quad \text { with } \boldsymbol{q}_{\beta}=\mathbb{E}\left[Z^{\beta}\right]<1
$$

for $\beta \in(0, \alpha)$.

How to convert [DH83] into a proof? $\alpha \in(0,1)$

Two main problems:
(1) Technical: building the guess probability γ_{ε} (needs sharp asymptotic properties of the invariant densities in the two regimes.
(2) More substantial: the probability provided by [DH83] is not the the invariant probability! Is it close to it? In which sense?

In [GGG17] we introduced a family of norms $\|\cdot \mid \cdot\|_{\beta}$ with the property that if ν_{1} and ν_{2} are probabilities then

$$
\left\|T_{\varepsilon}\left(\nu_{1}-\nu_{2}\right)\right\|_{\beta} \leq \boldsymbol{q}_{\beta}\left\|\nu_{1}-\nu_{2}\right\|_{\beta} \quad \text { with } \boldsymbol{q}_{\beta}=\mathbb{E}\left[Z^{\beta}\right]<1
$$

for $\beta \in(0, \alpha)$. So (m_{ε} invariant, γ_{ε} the guess)

$$
\begin{aligned}
\left\|m_{\varepsilon}-\gamma_{\varepsilon}\right\|_{\beta}=\| \| T_{\varepsilon} m_{\varepsilon}-\gamma_{\varepsilon} \|_{\beta} & \leq\left\|T_{\varepsilon}\left(m_{\varepsilon}-\gamma_{\varepsilon}\right)\right\|_{\beta}+\left\|T_{\varepsilon} \gamma_{\varepsilon}-\gamma_{\varepsilon}\right\|_{\beta} \\
& \leq q_{\beta}\left\|m_{\varepsilon}-\gamma_{\varepsilon}\right\|_{\beta}+\left\|T_{\varepsilon} \gamma_{\varepsilon}-\gamma_{\varepsilon}\right\|_{\beta}
\end{aligned}
$$

How to convert [DH83] into a proof? $\alpha \in(0,1)$

Two main problems:
(1) Technical: building the guess probability γ_{ε} (needs sharp asymptotic properties of the invariant densities in the two regimes.
(2) More substantial: the probability provided by [DH83] is not the the invariant probability! Is it close to it? In which sense?

In [GGG17] we introduced a family of norms $\|\mid \cdot\| \|_{\beta}$ with the property that if ν_{1} and ν_{2} are probabilities then

$$
\left\|T_{\varepsilon}\left(\nu_{1}-\nu_{2}\right)\right\|_{\beta} \leq \boldsymbol{q}_{\beta}\left\|\nu_{1}-\nu_{2}\right\|_{\beta} \quad \text { with } \boldsymbol{q}_{\beta}=\mathbb{E}\left[Z^{\beta}\right]<1
$$

for $\beta \in(0, \alpha)$. So (m_{ε} invariant, γ_{ε} the guess)

$$
\begin{aligned}
\left\|m_{\varepsilon}-\gamma_{\varepsilon}\right\|_{\beta}=\| \| T_{\varepsilon} m_{\varepsilon}-\gamma_{\varepsilon} \|_{\beta} & \leq\left\|T_{\varepsilon}\left(m_{\varepsilon}-\gamma_{\varepsilon}\right)\right\|_{\beta}+\left\|T_{\varepsilon} \gamma_{\varepsilon}-\gamma_{\varepsilon}\right\|_{\beta} \\
& \leq q_{\beta}\left\|m_{\varepsilon}-\gamma_{\varepsilon}\right\|_{\beta}+\left\|T_{\varepsilon} \gamma_{\varepsilon}-\gamma_{\varepsilon}\right\|_{\beta}
\end{aligned}
$$

Hence

$$
\left\|m_{\varepsilon}-\gamma_{\varepsilon}\right\|_{\beta} \leq c_{\beta}\| \| T_{\varepsilon} \gamma_{\varepsilon}-\gamma_{\varepsilon} \|_{\beta} \quad\left(c_{\beta}=\left(1-q_{\beta}\right)^{-1}\right)
$$

What to do if $\alpha=0$? (Sketch of proof)

$\|\mid \cdot\|_{0}$ is well defined, actually for m_{1} and m_{2} a probabilities

$$
\left\|m_{1}-m_{2}\right\|_{0}=\int_{0}^{\infty}\left|G_{m_{1}}(t)-G_{m_{2}}(t)\right| \frac{\mathrm{d} t}{t}
$$

with $G_{m}(t)=\int_{(t, \infty)} m(\mathrm{~d} t)$.

What to do if $\alpha=0$? (Sketch of proof)

$\|\cdot\|_{0}$ is well defined, actually for m_{1} and m_{2} a probabilities

$$
\left\|m_{1}-m_{2}\right\|_{0}=\int_{0}^{\infty}\left|G_{m_{1}}(t)-G_{m_{2}}(t)\right| \frac{\mathrm{d} t}{t}
$$

with $G_{m}(t)=\int_{(t, \infty)} m(\mathrm{~d} t)$.
Problem is: the contractive constant $q_{0}=\mathbb{E}\left[Z^{0}\right]=1$ and $c_{0}=\infty$!

What to do if $\alpha=0$? (Sketch of proof)

$\|\mid \cdot\|_{0}$ is well defined, actually for m_{1} and m_{2} a probabilities

$$
\left\|m_{1}-m_{2}\right\|_{0}=\int_{0}^{\infty}\left|G_{m_{1}}(t)-G_{m_{2}}(t)\right| \frac{\mathrm{d} t}{t}
$$

with $G_{m}(t)=\int_{(t, \infty)} m(\mathrm{~d} t)$.
Problem is: the contractive constant $q_{0}=\mathbb{E}\left[Z^{0}\right]=1$ and $c_{0}=\infty$!
Change of variables (and perspective): work with $X_{j}:=\log \sigma_{j} \in \mathbb{R}$, so $X_{j+1}=\log Z_{j}+f_{\varepsilon}\left(X_{j}\right)$ with

$$
f_{\varepsilon}: x \mapsto x+\log Z+\log \left(\frac{1+\varepsilon e^{-x}}{1+\varepsilon e^{x}}\right)
$$

What to do if $\alpha=0$? (Sketch of proof)
New Markov process on $\mathbb{R}: X_{j+1}=\log Z_{j}+f_{\varepsilon}\left(X_{j}\right)$ with

$$
f_{\varepsilon}: x \mapsto x+\log Z+\log \left(\frac{1+\varepsilon e^{-x}}{1+\varepsilon e^{x}}\right)
$$

So $\left(X_{j}\right)$ is a walk with centered increments on which a strong repulsion acts when it attempts leaving $[\log \varepsilon,-\log \varepsilon]$.

What to do if $\alpha=0$? (Sketch of proof)

First approximation

$$
\gamma_{\varepsilon}(x) \stackrel{?}{=} \frac{1}{2 \log (1 / \varepsilon)} \mathbf{1}_{[\log \varepsilon, \log (1 / \varepsilon)]}(x)
$$

tuns out to be too poor.

What to do if $\alpha=0$? (Sketch of proof)

First approximation

$$
\gamma_{\varepsilon}(x) \stackrel{?}{=} \frac{1}{2 \log (1 / \varepsilon)} \mathbf{1}_{[\log \varepsilon, \log (1 / \varepsilon)]}(x)
$$

tuns out to be too poor.
Recenter the process on $\log \varepsilon$ and on $-\log \varepsilon$ (qualitatively symmetric problems): the $\varepsilon \searrow 0$ Markov chain is a well known walk with one barrier key tool in the analysis of the Sinai RWRE [Kesten, Kozlov, Spitzer,..]] (much studied also as critical case of random affine iterations [Babillot, Bougerol, Elie, Broferio, Buraczewski, Damek]). The one barrier walk is a null recurrent processes.

What to do if $\alpha=0$? (Sketch of proof)

First approximation

$$
\gamma_{\varepsilon}(x) \stackrel{?}{=} \frac{1}{2 \log (1 / \varepsilon)} \mathbf{1}_{[\log \varepsilon, \log (1 / \varepsilon)]}(x)
$$

tuns out to be too poor.
Recenter the process on $\log \varepsilon$ and on $-\log \varepsilon$ (qualitatively symmetric problems): the $\varepsilon \searrow 0$ Markov chain is a well known walk with one barrier key tool in the analysis of the Sinai RWRE [Kesten, Kozlov, Spitzer,...] (much studied also as critical case of random affine iterations [Babillot, Bougerol, Elie, Brofferio, Buraczewski, Damek]). The one barrier walk is a null recurrent processes.

What to do if $\alpha=0$? (Sketch of proof)

We can actually do

$$
\left\|T_{\varepsilon} \gamma_{\varepsilon}-\gamma_{\varepsilon}\right\|_{0}=O\left(\varepsilon^{a}\right)
$$

for an $a>0$. Useful?

What to do if $\alpha=0$? (Sketch of proof)

We can actually do

$$
\left\|T_{\varepsilon} \gamma_{\varepsilon}-\gamma_{\varepsilon}\right\|_{0}=O\left(\varepsilon^{a}\right)
$$

for an $a>0$. Useful?
We still need to circumvent the lack of contraction.

What to do if $\alpha=0$? (Sketch of proof)

We can actually do

$$
\left\|T_{\varepsilon} \gamma_{\varepsilon}-\gamma_{\varepsilon}\right\|_{0}=O\left(\varepsilon^{a}\right)
$$

for an $a>0$. Useful?
We still need to circumvent the lack of contraction.
Recover a micro-contraction by exploiting the structure of the $\left(X_{j}\right)$ process at $\varepsilon>0$: we show that for $c>2$

$$
\left\|m_{\varepsilon}-\gamma_{\varepsilon}\right\|_{0} \leq(\log (1 / \varepsilon))^{c}\left\|T_{\varepsilon} \gamma_{\varepsilon}-\gamma_{\varepsilon}\right\|_{0}=O\left((\log (1 / \varepsilon))^{c} \varepsilon^{a}\right)
$$

which largely suffices.

Conclusions and perspectives

- Class of matrices is very specialized, but in reality via conjugations etc. . . we can reach a class of matrices that is (or appears to be) much larger.

Conclusions and perspectives

- Class of matrices is very specialized, but in reality via conjugations etc. . . we can reach a class of matrices that is (or appears to be) much larger.
- Lots of room in the last estimate. . . and the result itself

$$
\mathcal{L}(\varepsilon)=\frac{\kappa_{1}}{\log (1 / \varepsilon)} \sum_{j=0}^{\infty}\left(\frac{-\kappa_{2}}{\log (1 / \varepsilon)}\right)^{j}+O\left(\varepsilon^{a}\right)
$$

is not the minimal result one is after.

Conclusions and perspectives

- Class of matrices is very specialized, but in reality via conjugations etc. . . we can reach a class of matrices that is (or appears to be) much larger.
- Lots of room in the last estimate... and the result itself

$$
\mathcal{L}(\varepsilon)=\frac{\kappa_{1}}{\log (1 / \varepsilon)} \sum_{j=0}^{\infty}\left(\frac{-\kappa_{2}}{\log (1 / \varepsilon)}\right)^{j}+O\left(\varepsilon^{a}\right)
$$

is not the minimal result one is after.

- Expected (?) that

$$
\mathcal{L}(\varepsilon) \sim \frac{\kappa_{1}}{\log (1 / \varepsilon)}
$$

holds under much weaker conditions (e.g., support of Z spans $(0, \infty)$?) However our tools really do not get there: difficulties both in building γ_{ε} and showing that it is close to m_{ε}.

