The time constant for Bernoulli percolation is
Lipschitz continuous strictly above p,
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Percolation

e Graph (Z9,E9), d > 2.

o (B(€))eero: i.i.d. family of Bernoulli random variable of parameter
p € [0,1].

e B(e)=1 = eis open.

e B(e)=0 = eis closed.

Figure 1: Simulation of percolation for parameters p = 0.1; 0.3 and 0.6
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Percolation probability

e Random graph G, = (Z%,{e € E? : B(e) = 1}).

e C,(0): the connected component of 0 in G,.
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Percolation probability

e Random graph G, = (Z%,{e € E? : B(e) = 1}).
e C,(0): the connected component of 0 in G,.
Definition (Percolation probability)

Vpe[0,1]  6(p) =P(IC,(0)] = o).

e 6(0)
e 0(1)

e p — 6(p) is nondecreasing

0
1
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Phase transition

Definition (Critical parameter)

pc=sup{p: 6(p)=0}
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Phase transition

Definition (Critical parameter)

pc=sup{p: 6(p)=0}

Phase transition at p. €]0, 1[:

Theorem (Broadbendt-Hammersley 57-59,...)

0(p) =0 1 o(p) > 0 |
No infinite '? Existence of a unique

0 Pc 1
|
[

cluster ' infinite cluster C,
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Graph distance

We are interested in the random metric induced by G, when p > p.. We
define for x and y in Z¢

Dp(x,y) = inf {|7| : v path that joins x and y in G,}

with the convention that D,(x,y) = oo if x and y are not in the same
connected component in Qp.
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First passage percolation : Definition of the time constant for

the graph distance

Theorem (Kingman 73-75, Cerf-Théret 14)
For p > pe, for any x € 79, there exists ji,(x) > 0 such that

im D,(0, nx)

= up(x) almost surely and in L*
n— o0 n

where 'y is the closest point in C, to y. This is the so-called time
constant.
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For p > pe, for any x € 79, there exists ji,(x) > 0 such that

im D,(0, nx)

= up(x) almost surely and in L*
n— o0 n

where 'y is the closest point in C, to y. This is the so-called time
constant.

Regularity of p, in p ?
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Regularity of the time constant

Theorem (Garet-Marchand-Proccacia-Théret 17)
The map p — i, is continuous for p > pc.
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Regularity of the time constant

Theorem (Garet-Marchand-Proccacia-Théret 17)
The map p — i, is continuous for p > pc.

Theorem (D. 18)

Let pg > pc, there exists a positive constant C (depending on pg) such
that

Vp,q € [po,1] STJP l1p(x) — pg(x)| < Clg — pllog|q — p|.

lIx]I=1

Theorem (Cerf-D. 21)

Let po > pc, there exists a positive constant C (depending on pg) such
that

Vp, q € [po, 1] sup, |1p(x) = 1g(x)| < Clg — pl.

Ixll=1
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General idea of the proof

Let g > p > p.. We couple the percolation in such a way that a p-open
edge is g-open using uniform random variable.
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General idea of the proof

Let g > p > p.. We couple the percolation in such a way that a p-open
edge is g-open using uniform random variable. It is easy to prove that
lp > [bq. For the other inequality, we have

q—pP

P(e is p-closed| e is g-open) = P(U(e) > p| U(e) < q) = P

where U(e) is uniform on [0, 1]. 7 is a g-geodesic between 0 and nx. The
number of edges to bypass is of order (g — p)n.

p-open bypass

p-closed edges

Figure 2: Build a p-open path upon a g-open path for ¢ > p > pc
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General idea of the proof

~" is a p-open path. The aim is to get the better control as possible of
Y\l -
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General idea of the proof

~" is a p-open path. The aim is to get the better control as possible of
Y\l -

Dp(0, nx) < || < |9l + '\ 7] = Dq(0, nx) + |7 \ 7l

If we prove that |4\ 7| < Golg — p|n then

Hp < fiq + Golg — pl.
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First approach: renormalization

(i p—op;.n bypass
/‘ S~ [

[ a good N-box
= a p-closed edge

Divide the lattice into boxes of mesoscopic size N. A good box is a box

that has good connectivity property. Being a good box is something very
likely for N large.
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First approach: renormalization

/‘ \,Z p—op;.n bypass

[ a good N-box
= a p-closed edge

Divide the lattice into boxes of mesoscopic size N. A good box is a box

that has good connectivity property. Being a good box is something very
likely for N large. Two cases :

1. Bad edge in good box
2. Bad edge in bad box
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A different approach

Let g > p > pc. v is the g-geodesic between 0 and nx. We don't reveal
which edges need to be bypassed. For each e € ~, we define c(e) the
cost to bypass e such that:
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Let g > p > pc. v is the g-geodesic between 0 and nx. We don't reveal
which edges need to be bypassed. For each e € ~, we define c(e) the
cost to bypass e such that:

e we can build 7' p-open path such that
|’7l \7| S ZeE'y ]le is p-closed C(e)-
e (c(€))ecy do not depend on the p-state of edges in y

O Zeev C(e)2 <Cn

We have

Dp(oa nX) S h/‘ S h’| + |'Y/ \7| S Dq(0> nX) P Z ]le is p-closed C(e)
ecy

10/12



A different approach

We have
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We have

E (Z ]le is p-closed C(e)> < C(q - P)n-

ecy

Var (Z ]le is p-closed C(e)> - Z C(e)2var(]le is p—closed) S Cn.

ecy ecy

By Markov's inequality, we get that with high probability

Z Tess p-closed C(e) < 2C(q - p)n.

ecy

To build c(e) we need a multiscale renormalisation.
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Thank you for your attention !
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