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Quantify the probability of observing anomalous macroscopic
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The framework

νNss : stationary state of the open SSEP on {−(N − 1), ...,N − 1}
with reservoirs at densities 0 < ρ− ≤ ρ+ < 1.
State space: ΩN := {0, 1}2N−1. η ∈ ΩN : a con�guration.

• When ρ− = ρ+ = ρ ∈ [0, 1]: reversible dynamics, no long-time
correlations:

νNss =
⊗

|i |≤N−1

Ber(ρ), Ber(ρ)({1}) = ρ = 1− Ber(ρ)({0}).



Correlations in the stationary state

• When ρ− ̸= ρ+, stationary density pro�le ρ̄ solves:

∆ρ̄ = 0, ρ̄(±1) = ρ±.

∀x ∈ (−1, 1), lim
N→∞

νNss (η⌊xN⌋) = ρ̄(x) =
(ρ+ − ρ−)x

2
+
ρ+ + ρ−

2
.

• Existence of a macroscopic current of particles, inducing long
range correlations [Spo83][DLS02]: if x ̸= y ∈ (−1, 1),

lim
N→∞

NEνNss

[
(η⌊xN⌋− ρ̄x)(η⌊yN⌋− ρ̄y )

]
= (ρ̄′)2∆−1

1d (x , y) =: k0(x , y).

with ∆−1

1d the kernel of the inverse one-dimensional Dirichlet
Laplacian.
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Statement of the problem

Question:

What is the probability that, in long time and for N large, the time
averaged correlations di�er from those of the stationary state?

• Formalisation: for a function ϕ : [−1, 1]2 → R, the two-point
correlation �eld ΠN(ϕ) is given by:

ΠN(ϕ) :=
1

4N

∑
|i |,|j |≤N−1

i ̸=j

η̄i η̄jϕi ,j , η̄i := ηi−ρ̄(i/N), ϕi ,j = ϕ
( i

N
,
j

N

)
.

Reformulated question:

Estimate, for a correlation kernel k and when N ≫ 1 and T ≫ 1:

PN
ρ±

( 1

T

∫ T

0

ΠN
t (ϕ)dt ≈

∫
(−1,1)2

k(x , y)ϕ(x , y)dxdy
)
.
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Long time, �xed N behaviour

Theorem (Donsker, Varadhan 1975)

N ∈ N∗ �xed. µN : probability measure on ΩN = {0, 1}2N−1.

lim
T→∞

1

T
logPN

ρ±

( 1

T

∫ T

0

δηt=ηdt ≈ µN
)
= −INDV (µ

N),

with INDV (µ
N) solving a variational problem.

• Reversible case (ρ+ = ρ− = ρ ∈ (0, 1)) :

νNss = νNρ :=
⊗

|i |≤N−1

Ber(ρ), Ber(ρ)({1}) = ρ = 1− Ber(ρ)({0}),

and INDV becomes:

INDV (µ
N) = DN

ρ (f 1/2µ ) := −νNρ
(
f 1/2µ Lρf

1/2
µ

)
, fµ =

dµN

dνNρ
.
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Non reversible case

Problem 1:

If ρ+ ̸= ρ−, Donsker and Varadhan's variational formula does not
have simple solutions.

Probleme 2:

Even in the reversible case, the probabilities of observing anomalous
density or correlation pro�les do not live at the same scale:

PN
rev

(∣∣∣ 1

TN

∫ T

0

∑
|i |≤N

ηi (t)fidt − ρ

∫
1

−1

f (x)dx
∣∣∣> ε

)
T≫1

≈ e−c(ε)TN−1

,

PN
rev

(∣∣∣ 1
T

∫ T

0

ΠN
t (ϕ)dt

∣∣∣ > ε

)
T≫1

≈ e−c ′(ε)TN−2

.
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Summary

Objective:

Estimate, for a kernel k and a test function ϕ, in the N,T ≫ 1
limits:

PN
ρ±

( 1

T

∫ T

0

ΠN
t (ϕ)dt ≈

∫
k(x , y)ϕ(x , y)dxdy

)
,

with := (−1, 1)2 \ {(x , x) : x ∈ (−1, 1)}.

Approach:

Consider 1

T

∫ T
0

ΠN
tN2dt (di�usive scale) for N ≫ 1 with T

�xed. Advantage: tools from hydrodynamic limits available.

[KOV89]: dynamics is tilted by well-chosen biases, of type
ΠN(h) for a test function h. Equations then need to be closed.

Key ingredient to close the equations and obtain quantitative
long-time estimates: the relative entropy method.
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The large deviations

T ′
s : symetric distributions in

(
H2( )

)′
. Equipped with the

weak-star topology.

Theorem

Let 0 < ρ− < ρ+ < 1 be su�ciently close to 1/2.

There is a functional I : T ′
s → R̄+, such that I = ∞ outside of

H1( ), and for any compact set K:

lim sup
T→∞

lim sup
N→∞

1

T
logPN

ρ±

( 1

T

∫ T

0

ΠN
tN2dt ∈ K

)
≤ − inf

K
I .

Let k be a smooth correlation kernel, close enough to the

correlations k0 = (ρ̄′)2∆−1

1d in the steady state. Then:

lim inf
T→∞

lim inf
N→∞

1

T
logPN

ρ±

( 1

T

∫ T

0

ΠN
tN2dt ≈ k(·)

)
≥ −I (k).



The relative entropy method

• Due to Yau (1991), used by Bertini, Funaki, Landim, Olla,
Quastel, Rezakhanlou, Varadhan... in the 90's. Allows for the study
of the typical behaviour of the density in many models.
Re�ned by Jara and Menezes (2018) to study �uctuations.

• Central idea: �nd a family (µNt )t≤T of measures, both as simple
as possible and close to the law ftN2µNt of the dynamics on [0,T ],
T > 0, in the sense:

H
(
ftN2µNt |µNt

)
:= µNt

(
ftN2 log ftN2

)
is "small" when N is large.

• Entropy inequality: for each V : ΩN → R,

µNt
(
ftN2V

)
≤ H

(
ftN2µNt |µNt

)
+ log µNt

(
eV

)
.
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The relative entropy method (2)

Useful orders of magnitude:

sup
t≤T

H
(
ftN2µNt |µNt

)
= o(N) for the density,

sup
t≤T

H
(
ftN2µNt |µNt

)
= o(N1/2) for �uctuations,

sup
t≤T

H
(
ftN2µNt |µNt

)
= oN(1) for corrélations.

Heuristics: observables

- for the density :
∑

−N≤i≤N

ηiϕ(i/N) ≈ O(N),

- for �uctuations :
∑

−N≤i≤N

η̄iϕ(i/N) ≈ O(N1/2).

- for correlations :
1

N

∑
i ̸=j

η̄i η̄jψ(i/N, j/N) ≈ ON(1).
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Choosing the measures µN
t : density and �uctuations

• Intuition: the particle system is locally at equilibrium, i.e the
dynamics in each small macroscopic box is at equilibrium at the
local value of the density, and independent from the rest of the
system.

• Consequence: compare the law of the dynamics to an
uncorrelated measure with the correct local densities:

µNt =
⊗

−N≤i≤N

Ber
(
ρ(t, x/N)

)
,

with, for the open SSEP :

∂tρ = ∆ρ, ρ(·,±1) = ρ±, ρ(0, ·) = ρ0.
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Choosing the measures µN
t : correlations

Theorem (≈ Jara, Menezes 2018)

For the open SSEP : supt≤T H
(
ftN2µNt |µNt

)
≤ C (T ) with µNt

product.

• The theorem is optimal when µNt is product.

• To study correlations, one needs: supt≤T H
(
ftN2µNt |µNt

)
= oN(1).

Idea:

Compare to a "gaussian" measure with correlations:

νNgt (η) =
1

ZN
gt

exp
[ 1

2N

∑
i ̸=j

η̄i η̄jgt
( i

N
,
j

N

)]
µNt (η), η ∈ ΩN .

Optimise then (gt)t to minimise H
(
ftN2νNgt |ν

N
gt

)
.
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The entropy estimate

Theorem

For the SSEP dynamics with reservoirs at su�ciently close density

ρ−, ρ+, there is a regular function g such that the law ftν
N
g of the

above dynamics at time t ≥ 0 satis�es:

H
(
ftN2νNg |νNg

)
≤ C (T )

(
H
(
f0ν

N
g |νNg

)
+ N−1/2

)
.

• Higher-dimensional entropy estimates?

• Other 1d gradient systems.

• Method allows for the study of correlations/�uctuations
conditioned to certain rare events. Example: �uctuations of a
SSEP on a ring conditioned to having a macroscopic current.
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Thank you for your attention!


