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SIR model
Kermack and McKendrick (1927)

Susceptible class S = healthy individuals that might be infected
Infected class I = infected individuals that can spread the disease to
susceptibles
Recovered class R = individuals that have recovered after having been
infected and have became immune

The model is described by
d
dtS = −λSI
d
dtI = λSI − µI λ, µ > 0
d
dtR = µI

(1)

Kurtz (1971):
Kurtz proved that (1) arises as the hydrodynamic limit of a stochastic
epidemic model in the mean field regime.
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The microscopic model

Tγ := [0, γ−1) ∩ N,

γ−1 =number of sites in Tγ

(γ → 0)

State space of the process: Ωγ := {−1, 0, 1}Tγ

η ∈ Ωγ
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0=Susceptible

1=Infected

−1=Recovered
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The rates:
For every η ∈ Ωγ , x ∈ Tγ ,

η (x) : 0 → 1 c0 (x, η) := γ
∑

y∈Tγ

βJ (γx, γy) I{η(y)=1}

η (x) : 1 → −1 c1 (x, η) := 1

◦ β > 0,
◦ J : T × T → R+, is symmetric and translation invariant

(⇒ J (r, r′) = J (0, dT (r, r′))),

▷ Our model is set in a local mean field regime
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Empirical measures
We consider the empirical measures associated to susceptible and
infected individuals

πγ,i
t (dr) := γ

∑
x∈Tγ

I{ηt(x)=i}δ{γx} (dr) ∈ M+ (T) , i ∈ {0, 1}

For every G ∈ C (T,R) we denote by〈
πγ,i

t , G
〉

:=
∫
T

G (r) πγ,i
t (dr), i ∈ {0, 1}

Initial distribution
Given ρ0 : T → [0, 1] a density profile, we suppose that,〈

πγ,0
0 , G

〉
P−−−→

γ→0

∫
T

ρ0(r)G (r) dr〈
πγ,1

0 , G
〉

P−−−→
γ→0

∫
T

(1 − ρ0(r)) G (r) dr

for every G ∈ C (T,R).
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Hydrodynamic limit

Theorem
For every T > 0, G ∈ C (T,R) and i ∈ {0, 1} we have that

sup
t∈[0,T ]

∣∣∣∣〈πγ,i
t , G

〉
−

∫
T

ui (t, r) G (r) dr

∣∣∣∣ P−−−→
γ→0

0

where ui : [0, T ] × T → [0, 1] satisfies

∂

∂t
u0(t, r) = −β(J ∗ u1)(t, r)u0(t, r)

∂

∂t
u1(t, r) = β(J ∗ u1)(t, r)u0(t, r) − u1(t, r)

u0(0, r) = ρ0(r), u1(0, r) = 1 − ρ0(r)

where (J ∗ u1)(t, r) :=
∫
T

J(r, r′)u1(t, r′)dr′.
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Asymptotic behaviour of the hydrodynamic limit

We have the following convergence

(u0 (t, r) , u1 (t, r)) −−−−→
t→+∞

(ρ∞ (r) , 0)

where

ρ∞ (r) = ρ0 (r) e−βJ∗(1−ρ∞)(r) (2)

Observe that from the statistics of the final survivors
if we know β and J then we can deduce location and density of the
initial infectors as ρ0 (r) = ρ∞ (r) eβJ∗(1−ρ∞)(r),

if we know J and that ρ0(r) = 1 then we can compute

β = −
(
J ∗ (1 − ρ∞) (r)

)−1 log ρ∞ (r) (3)
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Question: Is it possible to exchange the order of
the limits in t and γ?
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Mean field regime

Assumption: J ≡ 1
The main observables of the system are now the total densities of
susceptible and infected individuals

xγ (t) = γ
∑

x∈Tγ

I{ηt(x)=0} =
〈
πγ,0

t , 1
〉

,

yγ (t) = γ
∑

x∈Tγ

I{ηt(x)=1} =
〈
πγ,1

t , 1
〉

.

Initial distribution
Given ρ0 ∈ [0, 1] we assume that

xγ (0) P−−−→
γ→0

ρ0, yγ (0) P−−−→
γ→0

1 − ρ0
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Hydrodynamic limit in the mean field regime

For finite time ranges (xγ (t) , yγ (t)) P−−−→
γ→0

(x (t) , y (t)) which satisfy


d
dtx(t) = −βx(t)y(t)
d
dty(t) = βx(t)y(t) − y(t)

x(0) = ρ0, y(0) = 1 − ρ0

(4)

This result has been first proven by
T. G. Kurtz (1971) Limit theorems for sequences of jump Markov
processes approximating ordinary differential processes.

Trivial solution of (4):

If ρ0 = 1 ⇒ (1, 0), unstable equilibrium

If ρ0 = 0 ⇒ (0, e−t)

10 / 14



Hydrodynamic limit in the mean field regime

For finite time ranges (xγ (t) , yγ (t)) P−−−→
γ→0

(x (t) , y (t)) which satisfy


d
dtx(t) = −βx(t)y(t)
d
dty(t) = βx(t)y(t) − y(t)

x(0) = ρ0, y(0) = 1 − ρ0

(4)

This result has been first proven by
T. G. Kurtz (1971) Limit theorems for sequences of jump Markov
processes approximating ordinary differential processes.

Trivial solution of (4):

If ρ0 = 1 ⇒ (1, 0), unstable equilibrium

If ρ0 = 0 ⇒ (0, e−t)

10 / 14



Qualitative behaviour of the macroscopic solution in the mean field
regime, ρ0 ̸= 0, 1

ρ0 ≤ 1
β

x̄∞

x

t

ρ0

y

t

1 − ρ0

ρ0 > 1
β

x̄∞

x

t

ρ0

y

t

1 − ρ0

where x̄∞ is the smallest solution of

x = 1 + 1
β

log x − 1
β

log ρ0 (5)
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Long time behaviour of the microscopic model

We prove the convergence

(xγ (t) , yγ (t)) −−−→
t→∞

(xγ (∞) , 0) a.s.

where xγ (∞) is a random variable in [0, 1].

Question: How does xγ (∞) behave as γ → 0?

Theorem
Let ρ0 ∈ (0, 1) and β > 0, then xγ (∞) P−−−→

γ→0
x̄∞
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Criticality at β = 1

Theorem
1. If β < 1 and ρ0 = 1, then xγ (∞) P−−−→

γ→0
1

2. if β > 1, xγ (0) = 1 − γα, yγ (0) = γα and α ∈ (0, 1
2), then

xγ (∞) P−−−→
γ→0

x̂∞ < 1

where x̂∞ is the smallest solution of

x = 1 + 1
β

log x (6)
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Thank you for your attention!
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