Critical asymptotic behaviour in the SIR model

Monia Capanna University of L'Aquila

Rencontres de Probabilités 2021 21-22 October 2021

SIR model

Kermack and McKendrick (1927)

Susceptible class \underline{S} = healthy individuals that might be infected Infected class \underline{I} = infected individuals that can spread the disease to susceptibles

Recovered class \mathbf{R} = individuals that have recovered after having been infected and have became immune

SIR model

Kermack and McKendrick (1927)

Susceptible class \underline{S} = healthy individuals that might be infected Infected class \underline{I} = infected individuals that can spread the disease to susceptibles

 $\underline{\text{Recovered class } \mathbf{R}}$ = individuals that have recovered after having been infected and have became immune

The model is described by

$$\begin{cases} \frac{d}{dt}S = -\lambda SI \\ \frac{d}{dt}I = \lambda SI - \mu I \\ \frac{d}{dt}R = \mu I \end{cases} \qquad \lambda, \mu > 0$$
 (1)

SIR model

Kermack and McKendrick (1927)

Susceptible class \underline{S} = healthy individuals that might be infected Infected class \underline{I} = infected individuals that can spread the disease to susceptibles

 $\underline{\text{Recovered class } \mathbf{R}}$ = individuals that have recovered after having been infected and have became immune

The model is described by

$$\begin{cases} \frac{d}{dt}S = -\lambda SI \\ \frac{d}{dt}I = \lambda SI - \mu I \\ \frac{d}{dt}R = \mu I \end{cases} \qquad \lambda, \mu > 0$$
 (1)

Kurtz (1971):

Kurtz proved that (1) arises as the hydrodynamic limit of a stochastic epidemic model in the mean field regime.

$$\mathbb{T}_{\gamma} := [0, \gamma^{-1}) \cap \mathbb{N},$$

$$\mathbb{T}_{\gamma}:=[0,\gamma^{-1})\cap\mathbb{N}, \qquad \qquad \gamma^{-1}=\text{number of sites in }\mathbb{T}_{\gamma} \\ (\gamma\to 0)$$

$$\mathbb{T}_{\gamma} := [0, \gamma^{-1}) \cap \mathbb{N}, \qquad \qquad \gamma^{-1} = \text{number of sites in } \mathbb{T}_{\gamma}$$
 $(\gamma \to 0)$

State space of the process:
$$\Omega_{\gamma} := \{-1, 0, 1\}^{\mathbb{T}_{\gamma}}$$

$$\mathbb{T}_{\gamma} := [0, \gamma^{-1}) \cap \mathbb{N}, \qquad \qquad \gamma^{-1} = \text{number of sites in } \mathbb{T}_{\gamma}$$
 $(\gamma \to 0)$

State space of the process:

$$\Omega_{\gamma} := \{-1, 0, 1\}^{\mathbb{T}_{\gamma}}$$

$$\mathbb{T}_{\gamma}:=[0,\gamma^{-1})\cap\mathbb{N},$$

$$\gamma^{-1}$$
 =number of sites in \mathbb{T}_{γ} $(\gamma \to 0)$

State space of the process:

$$\Omega_{\gamma} := \{-1, 0, 1\}^{\mathbb{T}_{\gamma}}$$

- 0=Susceptible
 - 1=Infected
- -1=Recovered

$$\mathbb{T}_{\gamma} := [0, \gamma^{-1}) \cap \mathbb{N},$$

$$\gamma^{-1} = \text{number of sites in } \mathbb{T}_{\gamma}$$
 $(\gamma \to 0)$

State space of the process:

$$\Omega_{\gamma} := \{-1, 0, 1\}^{\mathbb{T}_{\gamma}}$$

 $\begin{array}{c} \begin{array}{c} 0 = \text{Susceptible} \\ \\ 1 = \text{Infected} \end{array} \end{array}$

-1=Recovered

$$\mathbb{T}_{\gamma} := [0, \gamma^{-1}) \cap \mathbb{N},$$

$$\gamma^{-1} = \text{number of sites in } \mathbb{T}_{\gamma}$$
 $(\gamma \to 0)$

State space of the process:

$$\Omega_{\gamma} := \{-1, 0, 1\}^{\mathbb{T}_{\gamma}}$$

The rates:

For every $\eta \in \Omega_{\gamma}$, $x \in \mathbb{T}_{\gamma}$,

$$\eta\left(x\right):0\to1$$
 $c_{0}\left(x,\eta\right):=\gamma\sum_{y\in\mathbb{T}_{\gamma}}\beta J\left(\gamma x,\gamma y\right)\mathbb{I}_{\left\{ \eta\left(y\right)=1\right\} }$

$$\eta(x): 1 \to -1$$
 $c_1(x, \eta) := 1$

The rates:

For every $\eta \in \Omega_{\gamma}$, $x \in \mathbb{T}_{\gamma}$,

$$\eta(x): 0 \to 1$$
 $c_0(x, \eta) := \gamma \sum_{y \in \mathbb{T}_{\gamma}} \beta J(\gamma x, \gamma y) \mathbb{I}_{\{\eta(y)=1\}}$
 $\eta(x): 1 \to -1$ $c_1(x, \eta) := 1$

- \circ $\beta > 0$,
- o $J: \mathbb{T} \times \mathbb{T} \to \mathbb{R}^+$, is symmetric and translation invariant $(\Rightarrow J(r, r') = J(0, d_{\mathbb{T}}(r, r')))$,

The rates:

For every $\eta \in \Omega_{\gamma}$, $x \in \mathbb{T}_{\gamma}$,

$$\eta(x): 0 \to 1$$
 $c_0(x, \eta) := \gamma \sum_{y \in \mathbb{T}_{\gamma}} \beta J(\gamma x, \gamma y) \mathbb{I}_{\{\eta(y)=1\}}$
 $\eta(x): 1 \to -1$ $c_1(x, \eta) := 1$

- \circ $\beta > 0$,
- $J: \mathbb{T} \times \mathbb{T} \to \mathbb{R}^+$, is symmetric and translation invariant $(\Rightarrow J(r, r') = J(0, d_{\mathbb{T}}(r, r')))$,

○ Our model is set in a local mean field regime

Empirical measures

We consider the empirical measures associated to susceptible and infected individuals

$$\pi_{t}^{\gamma,i}(dr):=\gamma\sum_{x\in\mathbb{T}_{\gamma}}\mathbb{I}_{\left\{\eta_{t}(x)=i\right\}}\delta_{\left\{\gamma x\right\}}\left(dr\right)\in\mathcal{M}^{+}\left(\mathbb{T}\right),\qquad i\in\left\{0,1\right\}$$

Empirical measures

We consider the empirical measures associated to susceptible and infected individuals

$$\pi_{t}^{\gamma,i}(dr) := \gamma \sum_{x \in \mathbb{T}_{\gamma}} \mathbb{I}_{\{\eta_{t}(x)=i\}} \delta_{\{\gamma x\}} \left(dr \right) \in \mathcal{M}^{+} \left(\mathbb{T} \right), \qquad i \in \{0,1\}$$

For every $G \in C(\mathbb{T}, \mathbb{R})$ we denote by

$$\left\langle \pi_t^{\gamma,i}, G \right\rangle := \int_{\mathbb{T}} G\left(r\right) \pi_t^{\gamma,i}(dr), \qquad i \in \{0,1\}$$

Empirical measures

We consider the empirical measures associated to susceptible and infected individuals

$$\pi_{t}^{\gamma,i}(dr) := \gamma \sum_{x \in \mathbb{T}_{2}} \mathbb{I}_{\{\eta_{t}(x)=i\}} \delta_{\{\gamma x\}} \left(dr \right) \in \mathcal{M}^{+} \left(\mathbb{T} \right), \qquad i \in \{0,1\}$$

For every $G \in C(\mathbb{T}, \mathbb{R})$ we denote by

$$\left\langle \pi_t^{\gamma,i}, G \right\rangle := \int_{\mathbb{T}} G(r) \, \pi_t^{\gamma,i}(dr), \qquad i \in \{0, 1\}$$

Initial distribution

Given $\rho_0: \mathbb{T} \to [0,1]$ a density profile, we suppose that,

$$\left\langle \pi_0^{\gamma,0}, G \right\rangle \xrightarrow{P} \int_{\mathbb{T}} \rho_0(r) G(r) dr$$
$$\left\langle \pi_0^{\gamma,1}, G \right\rangle \xrightarrow{P} \int_{\mathbb{T}} \left(1 - \rho_0(r) \right) G(r) dr$$

for every $G \in C(\mathbb{T}, \mathbb{R})$.

Hydrodynamic limit

Theorem

For every T > 0, $G \in C(\mathbb{T}, \mathbb{R})$ and $i \in \{0, 1\}$ we have that

$$\sup_{t \in [0,T]} \left| \left\langle \pi_t^{\gamma,i}, G \right\rangle - \int_{\mathbb{T}} u_i(t,r) G(r) dr \right| \xrightarrow{P} 0$$

where $u_i:[0,T]\times\mathbb{T}\to[0,1]$ satisfies

$$\begin{cases} \frac{\partial}{\partial t} u_0(t,r) = -\beta (J * u_1)(t,r) u_0(t,r) \\ \frac{\partial}{\partial t} u_1(t,r) = \beta (J * u_1)(t,r) u_0(t,r) - u_1(t,r) \\ u_0(0,r) = \rho_0(r), u_1(0,r) = 1 - \rho_0(r) \end{cases}$$

where
$$(J * u_1)(t,r) := \int_{\mathbb{T}} J(r,r')u_1(t,r')dr'.$$

Asymptotic behaviour of the hydrodynamic limit

We have the following convergence

$$(u_0(t,r),u_1(t,r)) \xrightarrow[t \to +\infty]{} (\rho_\infty(r),0)$$

where

$$\rho_{\infty}(r) = \rho_0(r) e^{-\beta J * (1 - \rho_{\infty})(r)}$$
(2)

Asymptotic behaviour of the hydrodynamic limit

We have the following convergence

$$(u_0(t,r), u_1(t,r)) \xrightarrow[t \to +\infty]{} (\rho_\infty(r), 0)$$

where

$$\rho_{\infty}(r) = \rho_0(r) e^{-\beta J * (1 - \rho_{\infty})(r)}$$
(2)

Observe that from the statistics of the final survivors

- if we know β and J then we can deduce location and density of the initial infectors as $\rho_0(r) = \rho_\infty(r) e^{\beta J * (1-\rho_\infty)(r)}$,
- if we know J and that $\rho_0(r) = 1$ then we can compute

$$\beta = -\left(J * (1 - \rho_{\infty})(r)\right)^{-1} \log \rho_{\infty}(r) \tag{3}$$

Question: Is it possible to exchange the order of the limits in t and γ ?

Mean field regime

Assumption: $J \equiv 1$

The main observables of the system are now the total densities of susceptible and infected individuals

$$x^{\gamma}(t) = \gamma \sum_{x \in \mathbb{T}_{\gamma}} \mathbb{I}_{\{\eta_{t}(x)=0\}} = \left\langle \pi_{t}^{\gamma,0}, 1 \right\rangle,$$
$$y^{\gamma}(t) = \gamma \sum_{x \in \mathbb{T}_{\gamma}} \mathbb{I}_{\{\eta_{t}(x)=1\}} = \left\langle \pi_{t}^{\gamma,1}, 1 \right\rangle.$$

Mean field regime

Assumption: $J \equiv 1$

The main observables of the system are now the total densities of susceptible and infected individuals

$$x^{\gamma}(t) = \gamma \sum_{x \in \mathbb{T}_{\gamma}} \mathbb{I}_{\{\eta_{t}(x)=0\}} = \left\langle \pi_{t}^{\gamma,0}, 1 \right\rangle,$$
$$y^{\gamma}(t) = \gamma \sum_{x \in \mathbb{T}_{\gamma}} \mathbb{I}_{\{\eta_{t}(x)=1\}} = \left\langle \pi_{t}^{\gamma,1}, 1 \right\rangle.$$

Initial distribution

Given $\rho_0 \in [0,1]$ we assume that

$$x^{\gamma}(0) \xrightarrow{P} \rho_0, \qquad y^{\gamma}(0) \xrightarrow{P} 1 - \rho_0$$

Hydrodynamic limit in the mean field regime

For finite time ranges $(x^{\gamma}(t), y^{\gamma}(t)) \xrightarrow{P} (x(t), y(t))$ which satisfy

$$\begin{cases} \frac{d}{dt}x(t) = -\beta x(t)y(t) \\ \frac{d}{dt}y(t) = \beta x(t)y(t) - y(t) \\ x(0) = \rho_0, \ y(0) = 1 - \rho_0 \end{cases}$$

$$(4)$$

This result has been first proven by

T. G. Kurtz (1971) Limit theorems for sequences of jump Markov processes approximating ordinary differential processes.

Hydrodynamic limit in the mean field regime

For finite time ranges $(x^{\gamma}(t), y^{\gamma}(t)) \xrightarrow{P} (x(t), y(t))$ which satisfy

$$\begin{cases} \frac{d}{dt}x(t) = -\beta x(t)y(t) \\ \frac{d}{dt}y(t) = \beta x(t)y(t) - y(t) \\ x(0) = \rho_0, \ y(0) = 1 - \rho_0 \end{cases}$$

$$(4)$$

This result has been first proven by

T. G. Kurtz (1971) Limit theorems for sequences of jump Markov processes approximating ordinary differential processes.

Trivial solution of (4):

- If $\rho_0 = 1 \Rightarrow (1,0)$, unstable equilibrium
- If $\rho_0 = 0 \Rightarrow (0, e^{-t})$

Qualitative behaviour of the macroscopic solution in the mean field regime, $\rho_0 \neq 0, 1$

where \bar{x}_{∞} is the smallest solution of

$$x = 1 + \frac{1}{\beta} \log x - \frac{1}{\beta} \log \rho_0 \tag{5}$$

Long time behaviour of the microscopic model

We prove the convergence

$$(x^{\gamma}(t), y^{\gamma}(t)) \xrightarrow[t \to \infty]{} (x^{\gamma}(\infty), 0)$$
 a.s.

where $x^{\gamma}(\infty)$ is a random variable in [0,1].

Long time behaviour of the microscopic model

We prove the convergence

$$(x^{\gamma}(t), y^{\gamma}(t)) \xrightarrow[t \to \infty]{} (x^{\gamma}(\infty), 0)$$
 a.s.

where $x^{\gamma}(\infty)$ is a random variable in [0,1].

• Question: How does $x^{\gamma}(\infty)$ behave as $\gamma \to 0$?

Long time behaviour of the microscopic model

We prove the convergence

$$(x^{\gamma}(t), y^{\gamma}(t)) \xrightarrow[t \to \infty]{} (x^{\gamma}(\infty), 0)$$
 a.s.

where $x^{\gamma}(\infty)$ is a random variable in [0,1].

• Question: How does $x^{\gamma}(\infty)$ behave as $\gamma \to 0$?

Theorem

Let
$$\rho_0 \in (0,1)$$
 and $\beta > 0$, then $x^{\gamma}(\infty) \xrightarrow[\gamma \to 0]{P} \bar{x}_{\infty}$

Criticality at $\beta = 1$

Theorem

- 1. If $\beta < 1$ and $\rho_0 = 1$, then $x^{\gamma}(\infty) \xrightarrow{P} 1$
- 2. if $\beta > 1$, $x^{\gamma}(0) = 1 \gamma^{\alpha}$, $y^{\gamma}(0) = \gamma^{\alpha}$ and $\alpha \in (0, \frac{1}{2})$, then $x^{\gamma}(\infty) \xrightarrow{P} \hat{x}_{\infty} < 1$

where \hat{x}_{∞} is the smallest solution of

$$x = 1 + \frac{1}{\beta} \log x \tag{6}$$

Thank you for your attention!