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SIR model

Kermack and McKendrick (1927)

Susceptible class S = healthy individuals that might be infected
Infected class I = infected individuals that can spread the disease to
susceptibles

Recovered class R = individuals that have recovered after having been
infected and have became immune
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Susceptible class S = healthy individuals that might be infected
Infected class I = infected individuals that can spread the disease to
susceptibles

Recovered class R = individuals that have recovered after having been
infected and have became immune

The model is described by

48 =—_\SI
41 =ASI —ul A\ >0 (1)
%R = ul

Kurtz (1971):
Kurtz proved that (1) arises as the hydrodynamic limit of a stochastic
epidemic model in the mean field regime.
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The microscopic model
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The microscopic model

T, :=[0,7v 1) NN, y~! =number of sites in T,
(y—=0)
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The rates:

For every n € Q,, z € T,,
n(z):0—1 co (z,m) =7 D BJ (v2,7y) Lpey=13

YTy
n(x):1— -1 c1(x,m) =1
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The rates:

For every n € Q,, x € T,

n(z):0—1 co (z,m) =7 D BJ (v2,7y) Lpey=13
YTy
n(x):1— -1 c1(x,m) =1
o >0,

o J:T xT— R", is symmetric and translation invariant
(= J(r,r") = J(0,dr (r,7"))),
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The rates:

For every n € Q,, x € T,

n(z):0—1 co (z,m) =7 D BJ (v2,7y) Lpey=13
YTy
n(x):1— -1 c1(x,m) =1
o >0,

o J:T xT— R", is symmetric and translation invariant
(= J(r,r") = J(0,dr (r,7"))),

> Our model is set in a local mean field regime
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Empirical measures

We consider the empirical measures associated to susceptible and
infected individuals

7N (dr) =7 Y Lpy@)=iy0(yay (dr) € MF(T), i€ {0,1}

z€T,
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Empirical measures

We consider the empirical measures associated to susceptible and
infected individuals

7N (dr) =7 Y Lpy@)=iy0(yay (dr) € MF(T), i€ {0,1}

z€T,

For every G € C (T,R) we denote by

w?”, / G(r i€ {0,1}

Initial distribution
Given pp : T — [0, 1] a density profile, we suppose that,

<7r0, ———>/p0

(w3, 6) = | (1= po(r) G (1) dr

¥—0

for every G € C (T, R).
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Hydrodynamic limit

For every T > 0, G € C (T,R) and i € {0,1} we have that

L}O

su
D ~¥—0

t€[0,T]

<7T;”,G> — ./TW (t,r) G (r)dr

where u; : [0,T] x T — [0,1] satisfies

%uo(t, r) = —B(J *xuy)(t,r)ug(t,r)
§u1(t, r) = B(J *uy)(t, r)up(t,r) — ui(t,r)
uo(0,7) = po(r),u1(0,7) =1 — po(r)

where (J xup)(t /Jrrultrd
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Asymptotic behaviour of the hydrodynamic limit

We have the following convergence

(UO (t7 T) ) Ul (tv T)) T (poo (T) 70)

t——400

where

Poo (1) = po () e~ BI*(1=poc)(r) (2)
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Asymptotic behaviour of the hydrodynamic limit

We have the following convergence

(UO (t7 T) ) Ul (tv T)) T (poo (T) 70)

t——400

where

Poo (1) = po () e~ BI*(1=poc)(r) (2)

Observe that from the statistics of the final survivors

o if we know 8 and J then we can deduce location and density of the
initial infectors as po (1) = poo (1) eP7*(17P=)(r)

o if we know J and that po(r) = 1 then we can compute

B=—(J*(1—po) ()" log peo (r) (3)
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Question: Is it possible to exchange the order of
the limits in ¢ and ~?
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Mean field regime

Assumption: J =1

The main observables of the system are now the total densities of
susceptible and infected individuals

7 (t) =~ Z Line(@)=0) = <7T?’0, 1>,

z€T,

Y () =7 Lyp@=1} = <7Tt7’1, 1>-

z€T,
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Mean field regime

Assumption: J =1

The main observables of the system are now the total densities of
susceptible and infected individuals

7 (t) =~ Z Line(@)=0) = <7T?’0, 1>,

z€T,

Y () =7 Lyp@=1} = <7T?’1, 1>-

z€T,
Initial distribution
Given pg € [0,1] we assume that

2 L v LN
x (O)EMM Y (0)7_7(?1 PO
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Hydrodynamic limit in the mean field regime

For finite time ranges (z” (t),y" (t)) 73)—) (z (t),y (t)) which satisfy
Fa(t) = —Bx(t)y(t)
#y() = Ba()y(t) — (1) (4)

2(0) = po, y(0) =1 —po

This result has been first proven by
T. G. Kurtz (1971) Limit theorems for sequences of jump Markov

processes approximating ordinary differential processes
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Hydrodynamic limit in the mean field regime

For finite time ranges (z” (t),y" (t)) —f—)()—) (z (t),y (t)) which satisfy
v

This result has been first proven by

T. G. Kurtz (1971) Limit theorems for sequences of jump Markov
processes approximating ordinary differential processes.

Trivial solution of (4):

o If pg = 1= (1,0), unstable equilibrium
o If pp=0= (0,77
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Qualitative behaviour of the macroscopic solution in the mean field

regime, pg # 0, 1

T Yy
Po
<1
PO > B i \\\\\\\—“‘¥ 1__»p
Fag—  ———
t t
T Yy
PO
1
pPo > 3 L
Lo e 1-p
t t

where T, is the smallest solution of

1 1

=1+ —-logz — —=1lo 5
glogz — 5logpo (5)
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Long time behaviour of the microscopic model

We prove the convergence

(7 (t),y" (t)) —— (27 (00),0) a.s.

t—o00

where 27 (00) is a random variable in [0, 1].
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Long time behaviour of the microscopic model

We prove the convergence

(7 (t),y" (t)) —— (27 (00),0) a.s.

t—o00

where 27 (00) is a random variable in [0, 1].

o Question: How does z7 (c0) behave as vy — 07

Theorem

Let pg € (0,1) and > 0, then z7 (c0) L{f s
Y
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Criticality at 5 =1

Theorem

1. If 8 <1 and pg = 1, then z7 (c0) LO>1
Y

2. ifB>1,27(0)=1—~% 37 (0) =7 and a € (0,1), then

z7 (o0 )—)ZL‘OO<1
7—0

where Too is the smallest solution of

1
.I‘Zl—i-BlOglL‘ (6)
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Thank you for your attention!/
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