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Let (X, H. ;1) be the Wiener space; we define “twisted Sobolev spaces™ associated
to certain compact operators on H. Wiener functionals belonging to one of these
spaces are termed “hypersmooth”; we prove a measure-theoretic analog of Sard’s
theorem for them. Our result applies in particular to solutions of I16’s SDE’s with
Gevrey class coefficients.  © 1995 Academic Press. Inc

CONTENTS

1. Ité-Taylor formula for Gerrey functionals.

2. Classes of hyper-Gevrey functionals.

3. Heat propagation for the Ornstein—-Uhlenbeck process.
4. Majoration of the oscillation of an abstract functional.
5. A covering lemma.

6. Sard theorem.

Appendix [. Example of Ité- Gevrey functionals: 16 functionals associated to a
Gevrey SDE.  Al. A classical majoration for a multiplicative stochastic integral.
A2. Best approximation of an Ité functional by functions of a finite number of
variables.

INTRODUCTION, NOTATIONS AND PREREQUISITES

Let X be the Wiener space, 4 the Wiener measure on X, /> X—R a
smooth map in Malliavin’s sense [10] and %, the set of critical points
of fi a classical result [ 10, p. 385] allows us to state that the measure
Sy[(1—=1,)u] is absolutely continuous relatively to the Lebesgue measure
m on R. It is now rather natural to study the residual part p,= f,(1, p)
of the image measure v,= f, u. Should X be replaced by a finite-dimen-
sional Gaussian space, Sard’s well-known theorem [ 14] would imply that
p, would be singular with respect to m; such is not the case here.
Y. Katznelson and P. Malliavin [ 8] have even produced an example of an
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192 PAUL LESCOT

f such that p, has a nonzero C* density with respect to m. The classical
proof of Sard’s theorem is related to covering properties. It is well known
that for C*-functions defined on R”, the theorem [ails to be true if # is large
enough. On the Wiener space there are essentially two distinct manifesta-
tions of the “lack of compactness™:

(i) The unit ball of linear forms on L*[0, 1]) is not compact, and
the analogous fact is true for all the components of the Wiener chaos
(linear forms being canonically identified to the elements of the first-order
Wiener chaos).

(11) Most interesting Wiener functionals are not differentiable in the
Banach space sense.

In finite dimension, Ascoli’s theorem ensures that the unit ball of the
space of Lipschitz functions is compact in the space of continuous func-
tions. No equivalent exists on X according to (i). Recently Da Prato,
Malliavin, and Nualart [4] have given a full characterization of the com-
pact subsets of the set of smooth functionals. We shall prove that solutions
of certain stochastic differentials equations are “hyper-Gevrey functionals”
in a sense to be made precise below. For such functionals, we shall prove
Sard’s theorem by a covering argument based on an estimation of the
oscillation of the function in a fiber containing a critical point. We shall
generally follow the terminology and notation of [10]: (X, H, u) will
denote the usual Wiener space, V, the gradient in Malliavin’s sense, & the
Ornstein—Uhlenbeck operator, C, the nth Wiener chaos; it is well known
that L*(X) is the orthogonal direct sum of the C,. We shall denote by j the
canonical isomorphism

i H— LY[0,1])
given by

Sard’s theorem in infinite dimension has recently been investigated in
[13]; the setting, however, is rather different there.

A sketch of this paper appeared as part 5 of my Ph.D. thesis (Université
Paris VI, 1993) written under the guidance of Professor Paul Malliavin;
elements of part 4 of the thesis also appear in Section 3. The bulk of the
writing-up was done while I was visiting the Institut fiir Angewandte Mathe-
matik in Bonn (October 1993---February 1994); I take the opportunity to
thank Michaél Réckner and Hans Follmer for inviting me and for helping
in many ways to make my stay in Germany pleasant and fruitful. Sergio
Albeverio and Niels Jacob greatly honored me by their invitations to lecture
upon this material in Bielefeld and Erlangen, respectively; I then benefitted
a lot from comments by members of the audience, notably Z. Brzezniak.



HYPER-GEVREY FUNCTIONALS 193
1. ITO-TAYLOR FORMULA FOR GEVREY FUNCTIONALS

THEOREM 1.1. Let ge % %7 (X) be
Vme N, V78|l 12y gom < ey (m!y” (A"
where a >0 and y = 1, then, denoting by %, the set of critical points of g, i.e.,
€. ={xeX|Vg(x)=0},
one has, setting »' = max(x, 1):
ENIN0) = glx (0021, (x,(0))) S cpexpl =y y*n) 1 1)

(where x,(t) is the Ornstein-Uhlenbeck process on X([9])}), with ¢, and ¢,
depending only upon ¢ and a.

A number of preliminary results will be useful.

LemMMA 1.2 (Stroock’s commutation formula [15]). #V=V(¥ +1).

Proof. 1t is obvious via the chaos expansion. |

LemMMma 1.3. Let fe % >7(X), then
H_'f" VfH LY X H) < H:!)" + lfh LX)

Proof. Let f=3,, .0/ the decomposition of f on the Wiener chaos:
one can write:

Nf= 5 2V,

mz0
= Z ( 1 _”’1)" V’;n*
mz=0
whence

| £ Vf\‘i:( o= Z (m—1 )Zn HmeHil(,\’;m

mz=0

z (m—1)"m [ %P(X)

nmz=0

Z )712" +2 H./;n ” ‘1‘2‘11 X

n =0

Hy”-'-lfuih,\')' l

N
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By an elementary operator of type (r, s) we shall mean the product, in an
arbitrary order, of r factors ¥ and s factors V. The next two lemmas allow
us to reduce the study of such operators to that of powers of .

LeMMma 1.4, Let A be an elementary operator of type (r.s); then
Ve # (X)) A 1 zovenon < 1L M-

Proof. Let us proceed by induction over r+s, as the result is obvious
for ¥ +s=0. In the other case, there are two possibilities:
{a) A is of the shape B¥, where B is of type (r — 1, s}. The induction
hypothesis applied to B now gives us
HI‘UH% vien = [BLS] il(,\:/lm‘)
< H:[u.Jr‘sf 1(:[7.“\3‘:“”
=L s
whence the desired conclusion.

(b) A is of the shape BV, where B is of type (r,s—1). We can then
apply the induction hypothesis to B and to each of the components
Ji=(Vf ] ey} we get

Ry o2 hw— b2
i\Bfk;‘/,2(,";;,@“—1,,SHf/)'+\ ./A-”;_fu'w

But one has

Vf= Z S

k=0

whence

Af=S Bl ®e

k=0
+ x

~(/}),+“, 1 sz Z (n([)rﬁ»‘y— l/L) [
k=0

Summing over k in the above inequalities we thus get

HA/H ';”2' X H®% $ ”‘fr*ﬂ ! Vf“%:' X H)
<L 1 2xe

where we have used Lemma 1.3. The result follows. {
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LEMMA 1.5. Let fe # >=(X); then one has
fnf“ e 1y)\(3”)2" Hf”l (Xi 32" ”VZ’TI‘Hillx;H@\lrn,-

Proof. Let us write the expansion of f using the “generalized Hermite
polynomials™;

f=3 cyH,.
We have
1L 17w = 2 1902 €5
and

“VZ'ff‘}‘;,31){;/1‘8(2"1,:Z H¢H HQSH 2n+ l

For [i¢| < 3n, one majorizes ||¢[|*" by (3n)?"; for | > 3n, one can write

2n

[T gl —j+ 1 =lg) —2n)>
i=1
>(‘ﬂ)”',
3

Il < 37 H ol —j+1).

j=1

whence

u

The result follows. |
COROLLARY 1.6. Let ge 2" (X) satisfving the hypotheses of the

theorem; then
Ve N, | £7gll 725 <2039 -y* 2%
where o' = max(x, 1).
Proof. By Lemma 1.5, we have
L) o0 S Bn) 8] o, + 37 IV 2l 22 v proiem
< (3% ¢ 4 3y 2n )1

<3 nnt‘hm 2+ 3711(, ,411(—)’1)4"1

/

2 ' 242 '
< (,-32"},41124run4nx + (,_3-/1),4!124:11’14”1

/

2(.2(9 . ,,,4 . 241):7 nﬂhm'. l
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LemMMa 1.7. Let fe w>*(X), A an elementary operator of type (r,s),
and n an integer at least equal to r+s. Then one has, Vie [0, 1],

EUAF,(1) = AFX (0030 L (x,(0)))

nor -

S t ’
<4n r .+lm“f'f/“);,3(/\’)'

Proof. n being fixed, we shall use induction on n—r—s. For r+s=n
we simply write

ENAf(x (1) = AL (X, (00 300 L, (x,(0)))
S EAf(x () — Af(x,(0))]15,6:)
S2ASNAF (X 3re) + EULASx(0))160)

=4 | Af]l i?(x;fl@‘)

because the Ornstein-Uhlenbeck process has the property that (x,), P=u
for each s e R. It is now enough to apply Lemma 14,

Let us now assume that r+s<n, and let (w;);_ be a Hilbertian basis
of H® Let us set

Each f; belongs to # >~ (X), and thus satisfies [td’s formula [3. p. 207],

S0 (8)) = fi(x (0 J Lf(x(u) du+ M, (o, 1),
where
My, 1) = [ 1V, ()l
is a martingale. It follows that
EWSx (1) = £5(x.,(0))) 14,(x,(0)))

; 2
<26 ((j _‘!’fj(xw(u))du> (Xl 0) + M (@, 17 1, (x ,,)(0))>.
0
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But ZAf(~x.(0))=0 and VAf(x,(0))=0 for almost all w such that
x,(0)e 6, by [7, Théoréme 4]. Schwarzs inequality and the definition of
M, thus allow us to write

EWSxX N =[x 00D 1, (x,(0)))

<2 | BULLAx 1) = L0 L (X, (00) du
~{

+2 [ BUV,0e0) = VX AN 1, (3,00))) dit
O

By the dominated convergence theorem one may, while summing on j,
exchange integration and summation; moreover, one has

LAf= Y (Lf)w
JjeN

and

VAf=Y V®w,

JjeN
It appears that
ECIAf(x (1) — Af(x (0))] 750 1, (x,,(0)))

<2 j’ U LALX 1)) — LAFAON 3o 1 X,10))) du
)

o

+2 | VAN (0] = VASROD Frowin 1, (x,(0))) dt
0]

The induction hypothesis now gives us

(S'(HAf(\” Af(x,(0)) llnu “ (x,(0)))

°!

n—r—s

<227 i:m—. m <J W T Yyt Jo whor e du>

D.4m v s l
= s.(l +1) h(-(/}'fm%?(.\'n

(n—r—s—11n—r—

4!1 reos 41

<
Th—r—s

[" -y H'-(/”TH‘;}‘ X I
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Proof of Theorem 1.1. Let us apply Lemma 1.7 to f=g and 4 =1d; we
get

2 tn hl
Vee[0,1],VneN, &(|glx (1)) —glx (0))]° I,GK(.\‘(,,(O))) <4+t ] 1221175 v,
By Corollary 1.6, this is less than

LA .
4/: +1 F 2(_-(9 . ,},4 . 243()1: n41m .

But #! > (n/e)”, whence Yie[0, 1], Vue N,
E(lg(x, (1)) —g(x,, (0N L (x,(0)) < 8c3(36.¢-y*. 2%y gt =1,

Choosing n= E((1/e)}(36-¢-y*.2%.1) Y% =1 we see that the right-hand
side 1s less than
8('2(36 Le- },4. 241. ’)u e —141'——1)11(36 4().),4.241 1) ”
— 8(.2() —(4x' — Lin

gg(,z(,m' “ o4 S1yeN36 et 24 “4-“"".

1

Whence the result with ¢, = 8¢%¢* ! and

4o’ —1

(36'?']61)71”41’7“- I

Remark. All infinite dimensional separable Gaussian probability spaces
are canonically isomorphic; the results of this section are therefore valid for
any of them. We shall use that remark in Section 4.

2. CLASSEs OF HYPER-GEVREY FUNCTIONALS

The definitions in this paragraph can be considered as the axiomatic
basis for the sequel of the paper. Let (X, H, u) be an abstract Wiener space;
a positive definite self-adjoint compact operator .o/ on H will be called of

order a if
;‘19 ez A >

n

being its eigenvalues in decreasing order, there are ¢ > 0 and ¢’ > 0 such that:

Vn >0, cn~Y<l, <en”
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Now, such an </ being given, we will define the Sobolev spaces #7 , by
their norm:

-

Hqﬂfg,f_/: Z H(ﬂ/@j)i : Vj¢||14l’1x;ni*‘“)-

=0

x

Then we shall the class 4 7l X) of hypersmooth functionals of order (p, a, x)
by the condition that there exists a compact operator .«# of order & and real
numbers ¢,(p) and ¢,{ p) such that ¥e N:

gl <alp)edp) (rh)
It is a consequence of Appendix Al that It functionals provided by solu-
tions of SDE’s with coefficients of Gevrey class o are elements of y;.a(X)
for each p>1 and each a < i: the operator ./ can be taken to be .1, and
¢(p) and c,(p) are explicitly computable from p, ¢, and the derivatives of

the o,. We define

44X =) 9 (X

P
p=1

3. HEAT PROPAGATION FOR THE ORNSTEIN-UHLENBECK OPERATOR

LemMMa 3.1. Given xe ]0,1[ and re )0, 1[ there exists ¢, . such that,
whenever A < X is a Borelian set with u(A) = x then one has

Vizr,  E(P1,) ")<e, ..
Proof. We shall use the symmetrization procedure in the sense of
Ehrard [5] and Borrell [1]. Let us denote by 4” the symmetrization of 4
in the sense of [I, p. 3] (with ¢=g=0, n=1, f=1,). Then for any
p:R* — R convex and increasing, we have
E(p(P, 1)< E(p(P. 1))
For £ >0 let us denote
Ay =(e+&) " +re L

Then p, is convex and increasing; thus

E(p P 1)< E(p,(P,10)).

SR80 129 1-14
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Furthermore,
E(P1,)=u(A)
E(P1 ) =A%) = u(A).
Therefore (i) implies that
E((e+P1,) "YSE{e+ P11, ")
Letting ¢ — 0 we get
E((P, 1) ) <E(P10)7")

(this is obvious when the right-hand side is infinite; in the other case,
Lebesgue’s dominated convergence theorem can be applied.)

The computation of the right-hand side for a half-space reduces the
problem to a problem in one dimension. On R we shall use the Mehler
formula,

p(Eos ) =(27) —1/2 /;’nze—nzu-"':u —rn:/:"
where

Bi=(1—e )"
and p, is defined by

Prf(éo) =J. f(”)pr(f(b n) d’7

R

We determine 4, by the condition

j \7 dug(n)=x,

where
dug(n)=2m) Ve 772 dy.
One has trivially:,

PN —e"z’ég—qz.

- %(9 “Ey—n)
Therefore, by an elementary computation, we get the result whenever

t>%log(l+2r).

But log(1 +2r)<2r. |
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LEMMA 3.2, Let G be a Hilbert space; for each p =1, each ne N, and
each ge # 7" (X.G), one has YVt =0

27r

L

E(lg—Pgli1, )< 1" Lghy

where
%, ={xeX|Vg(x)=0}.
Proof. We shall proceed by induction over n. For n =0 we have
Elllg—Pgli1,)<Ellg—P.glt)
=llg=Pgl v
SUlgh iyt P&l Lox: o))’
<2 lglrnye)”
=2"lglrxa

because P, is a contraction on L7(X; G); the result follows.
Let us assume the result to be true at rank #» and let ge ¥ 7 (X, G); we
have

g—Pg= JO (—P,Lg)du

(1t 1s enough to check the equality for g a scalar function, and thus for
geC,, . but then it reduces to the obvious:

at

me "™ du)
<0

nr o __

l—e

But #g =0 almost surely on %, by Théoréme 4 of [7, p. 86], whence

il

I, (g—Pg)= J 1, (Lg—P,Lg)du.
0
One thus has

=PIl o< 148~ P, L8l du
) 4]
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Holder’s inequality now implies that

Lip

' lig '
e Pty o< ([} " ([1ze poreign, a)
0 0
where ¢ is the conjugate exponent of p. It now follows that
g =P Lt | | 2g— P, L5l 1, du
; 0 :

But the induction hypothesis applied to g gives us

Vuel0, 1], E(|%g—P,ZLglli1,,,)
27

ST
[1;Z0 (L+p)
But ¢, <% ,, by Théoreme 4 of [7], whence

uu[' “(‘(/)n+ IgH ,17‘“ o

E(lg—P.gl¢1y,)

&

<t 'J E(|%g—P, %"\, ) du
0

<[ E(2e—P, 28|01, ) du
G Lty

0
lj' 27
o TT7 20 (1+jp)
2p n(fn+l ro '
_ HTL] gl 1,/7(,\',_(_,_)1,,71.( ™ du
I—L:o (1+jp) 0
_2 02" gl ey o P
T (1 +jp) pt
_21, 1"‘{/)”+]g” I[’.”(X:GD (n+1p

B [T/ -6 (1 +.4p)

The result is now established at rank n+1. |

<t” wnr | L g Socxan dit

4, MAJORATION OF THE OSCILLATION OF AN ABSTRACT FUNCTIONAL

In the above paragraph an oscillation theorem has been proved for the
case of a ¥ ~-functional. We want to prove an oscillation result for a
Gevrey functional having a critical set of large measure in the fiber. For
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each a >0 and each Gaussian space Y we define ¥4,(Y) to be the space of
g: Y — R satisfying the hypothesis (# ') of Theorem 1.1 for some y =1 and
some c.

LEMMA 4.1. Given a Gaussian probability space Y and ge 4 (YY), then,
Jor each integer m=1, u,, = ||Vg|*" e 4, Y).

Remark. This would not be true for w = ||Vg]|, according to the fact that
the square root is not a smooth functional.

Proof.
uy (y) =Ygy,
v/ d 2
:JO <E(Vg1}'))(f)> dt
1
= [ Dg(y)?ar
0
whence

1
Dou(3) =2 D, &(3)-Dgly)d.
0

Thus u, € 4,{ Y), whence the result because u,,=u?. |

LemMa 4.2, For each p>1 there is a constant K, such that, for each
Hilbert space G and each fe # ™7 (X, G), one has, Vne N,

2n
H"(/}'if‘“l‘/’(.k’;(i)sK;: n! Z HV{fHI_I’p\";}I@/@(i)'
i=0
Proof. By Meyer’s inequalities [ 12] there are constants ¢, (p> 1) such
that, Vfe ¥ "3 X; G),

1LLN o < ('p( [ fl rexeen + [szH Lrx % @Gy )-

We set K,=2(l+c¢,) and proceed by induction on n. For n=0 it is
obvious. Let us assume the hypothesis true at rank n—1 (n>1); then we
have

VL oy = 1L~ NLIY v

2n -2

<K;ﬂ](”_l)! Z IV Lfl rrovno @

Ji=0
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But it follows easily from Lemma 1.2 that V/¥ = (% — j) V/, whence

1L v

2n 2

<K'= Y (1LY e oo T IV e e o)
i=0
2n--2

<K'= Y (UV llavaee 6
i=0

+ HVjJrsz IO 3@(,‘;) +/HV,J‘H 1.1 .\';ll®f®(;>)
2n

=2

<K:7l(”_ Bk <"p Y MVl rxneie o
J

2n—2
+ Z ((’p+j) HV‘]J(‘H14/'(.)(';/11?/@(;))
j=0

2n
< K;', - 1) 2 ¢, +n) Z IV v 6
j=0
2n
< K;7 l(n —1 )' 2)1( 1 + ('p) Z ”V’/ H I H® @)
/=0
2n
gK;"! Z IV rxinsi@o-
J=0

The result then follows by induction. |

THEOREM 4.3. Given p < +oc there exists ¢, >0 and ¢, >0 such that
VYmeN,

[ 1A= 97l o () < e~
,

whenever j(6,) >4 and g€, (Y).

Proof. Let x>p be an integer, and let s =2x; let then r be defined by
s=p(1 +1/r). Clearly re ]0, I[. Setting f=r/(r+1), p=1+1/r=1/f and
i=r+1, one has
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which will allow us to use Holder’s inequality with the exponents 4 and p.
Setting ¢, , = P,1,,, we can write

E (y () 1(/E") T Vg5 00 (1,(0)))

=J 1/ ®™) Vgl e (1) g, 0 ¥) du( ).
y :
Now the Schwarz inequality gives us

[ ®) = 970 o it )
Y

It

Jy 1/ ™) V(1) Grom g1 () G d(3) dud y)

* L gm e ) L du(y) \'
([ e vt e, o auin ) (] )

N

. Lip .
( | It ®™) T Vg3 om0, 1) d y)) E(g )"
-

But one has, because of the reversibility of the Ornstein-Uhlenbeck
process,

[ 1) Vg3 e 4,00 i)

= E([(o/ ™) 7 Vg Gyen - P1)
= E(P,( H('d@)m)r—] VmgH.;,@m) 1’(}‘9)
S E((Prum - um) 1'6u )’

where 1, = |(.«/®”") ' V"g||3,en. Thus one has

J ”(C‘/@m) - Vmg” fl®’” d.u( V) S E( 'llm - Pl um‘ l’(,u )”p E(q'*é)lA
v m

We then apply Lemma 3.2 (with p=1) to u«,,. We have

2[" 1ip ., "
H"(‘p ”mHI.‘(.\')) E(qf,'(,,l)lv-'

| e ®m) T Vg () e du ) <
v n!
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Taking 7> r we get, by Lemma 4.2, that

[ 6o =™y )] o it )
,

2n Vip -
< |:2K’11 t” ( Z HV’“,”H L‘(X;II@U>:l E(q;_".:,-e)]%
7

j=0

and we get the result thanks to Lemmas 3.1 and 4.1. |

CoroLLarY 4.4, The oscillation of g on each fiber satisfies

TS
N7}

»
du(y)<cye

w2l | e - [ #thdu)

Proof. We use Ocone’s formula, which is possible because Y is
isomorphic to the classical Wiener space,

. 1
g(J')=J g(f')dﬂ(fHJ E(D,g)y) dyn),
Y 0
where D, g(y)=j(Vg(y))t). The Burkholder-Gundy inequalities [2,

Theorem 5.17 tell us that, for each p> [, there is a constant a, such that,
for each Hilbert-space valued adapted martingale A4(y, ¢), one has

!
E<tf A(y, 1) du(2)
1Yo

i ~1
><apj E(IlA(y, 1)]7) dt.
0
Applying this result to A(y, 1)=E ' "(Vg)(y), one finds

r ~1
duly)y=E <“ E'(D,g)(y) d(1)

0

)

a1l
<a, | EE" (D))" dr

0

1 y
<a, [ ECE"(D,gy)|)) di
0

j)guw—fymf)wAf>

Y

1
<a, | E(Dg()|") di
1t
ol
=a,,E< | aD,g<y>mm>
0

and one can then apply Theorem 4.3. |

5. A COVERING LEMMA

LEMMA 5.1. For a<} let o, denote a compact operator on H having
{m=“} *7 | for eigenvalues. Denote by </, , the restriction of <, to the space

m=1 an
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E, generated by its first n eigenfunctions. We take on E, the cuclidean

metric. Denote
g I3 ERYEAYE 4
C,={EeE, | |.o ;M) <n}.

Then for all ¢ >0 we have
ni2

2r

VO“ ((' ) < — ("_’”( ”u)m.‘
" aMn2)

“

where ¢, is independent of n and a.
We may assume that £ < 1; let us then set § = | — ¢ and note that

Proof.
Ve 10,61, _logf\_l —9 <ig‘5lr_ﬁ.
Denote
By = i L
Then
IO < =4, 0401 Inl <1})
and
vol((,) =vol({< | [14,,(5) < 1})
=det(.#, ') vol(Bg.(0, 1}).

an

But the volume of the unit ball in R” is

n:2

n2+1)

' has for its eigenvalues the n“/m*, for 1 <m < n: thus

'%u;n
n '1
logdet( 4, ) =a Y log—
' mo=1 m
Efi) < s nZl "
=da —log<l ——>>+a log (——)
s=1 n s= 1+ E(nus) n—ys

< —ad log(l —d)n + ane log n,

whence the result with
—rﬁ’lngil—d’):g—dzﬂt: I. I

(.l. = (1



208 PAUL LESCOT

THEOREM 5.2, For every &> 0 there exists a constant ¢, , independent of
) Lod p
n such that it is possible to cover €, by [n"c, ,r =" ] balls of radius r {(r < 1).

Proof. For each :{l,.,n} -Z we consider the hypercube c,
consisting of the points (&, ..., &,) of R” such that

D el
Vjé{l,...,n},éje]zilﬂj) _1(1//(1)_#1)]

NN
For each y such that C, ~ €, # (J we consider a ball of radius  containing

C,: such a ball is contained in (2 + 8r%)'? ¢}, whence their number is at
most

N(r)= (2 48732 vol(€, ) 2r/\/n) "

As
27[113‘2
VOl (/’ g (,Ll:l num:;_’,
(€ nl(n/2) 3
we get

2n_us“2 \/’_1 "
S 2 8 2y ("f, wnei2 )
N(r) ( ! ) nl (11/2) Conlt < 2r >

&

By Stirling’s formula, one has

n_ /n — (n\"*
§F<§>~\/mz<§> e,

whence we have a constant ¢ > 0 such that

h ¢ .
r <_> >— nu,“l( 2()) ﬂu‘r‘l.
2)% Jn

from which follows:

can anei2 02 - ny —n

z:"ln n-o -

) 2 ni2 R R
N(r)< 1072 nT \/’En —ni2(2e )2

C

n/2
— ( 107[ )m‘Z (E) g 1 (,:u;' nunn *‘2’. —n

2 c\/;

<c pEp N l

&d
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6. SARD THEOREM

THEOREM 6.1. Let a>0 and ac )0, a/d4[ be given, and let ge4, (X)),

o, X
define p,=g, (1, p). Then p, is carried by a set of zero Hausdorff
dimension.

Proof. In case u(%,) =0, we have p, =0 and the statement is obvious;
we shall henceforth assume that u(%,)>0. Let ./ be the operator that
appears in the definition of “hypersmoothness” and let e; (ie N*) be an
orthonormal basis of H in which .o/ is diagonalised: .«/e, = 4,¢;, with the
sequence 4, (ie N*) decreasing. We denote by V), the subspace generated
by the ¢, (1 <i<n). We denote by =r, the canonical orthogonal projection
onto V,:

7[”(,\') = Z <()/‘., .\‘>(’/‘..

k=1
It is clear that 4, =(n,), u is the canonical Gaussian measure on V. Let
Y,=kerz,=Im(/—nr,)
and
Au)',,z(l_nn'* lu

Then we have a pseudo-direct sum decomposition X=FV, @Y,
p=pt, ®uy and (Y, Vi, py,) is an abstract Wiener space. For (e V), we
define 4 measure on X by

VA =py((A—E)NY,).

It is clear that we have here a disintegration of 4 along (), u=u,., i€,

Ve L'(X) J f(x)yuldx)= J <J fix) \""5(dx)> o (dE).
¥, \Yx

X
Let 6,=m,(%,). Then
Iu l',,(%n) = [(nn)* lu]((ﬁn) :/,l(ﬂ'jl(n”((()k,)))

decreases to u(%,) when n — +oc. We can therefore find »n, such that:

Vn = n,, Hy (6,) <5 u(e,).

| W
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For each n > n, there is %4/, < %, such that

‘ 3
lt(l',,(%:1) >Ziu l',,(%n)

and such that
E'

o VgD (x) < e (*)

for each xen, '(%'). Furthermore, we know, by Section 5, that ||Vyg]
along each fiber is small. Let us denote g, = £'"(g); then one can write

V»ng” —_ E l',,( P ??"”( Vmg ) ),
whence

E(IV™ g, yyen) < E(IV"g) ysm).

Therefore g, has its mth derivative on %', bounded by ¢\e "™ by
the Sobolev embedding theorem on the finite-dimensional space V,,
g,€% (V). Let us define

9,={leV, | (Vg)*|, 1., vanishes on a set of measure > 1}

LemMa 6.2, &, is a closed set.

Proof.  Quasi-sure analysis [11].
LeEMMA 6.3. For each nzng, p, (4,) = %;1(’6_;{).
Proof. We have

)= v A, E) ()

Cn

M l’,,( (6'” - e/n) + /l l‘,,( g/H)

A
19—

SE) + 52

Let f>0 and ¢>0 be so chosen that f/(¢ + f1) > 4a/a; this is possible
because a < a/4. Let r,=n #; by Theorem 5.2, it is possible to cover

f/” M= ?/u M ‘q/("ﬂl',‘(yo’ M))w

using

nll(‘r —n
ane ,, n * %
Nll < n ( Lod ( M > ( )



HYPER-GEVREY FUNCTIONALS 211

balls of radius r,. According to Corollary 4.4, for each e %, . the

" noaidx

oscillation of g on Y. is less than ¢, exp( —c¢,n“**). Let us apply the finite-
dimensional Taylor’s formula to g, on V), in a neighborhood of € ¥, ; we
get

no .
gn(x)“gn‘:) = Z TV’g”‘,\‘ _é:* ceen -\‘—S:) + Rn.\f(-\‘)-
!

But, by (*), the oscillation of g, on each of these balls is at most

"t 43
wis .

W «
(l,(’ ! r,.

Furthermore, the oscillation of g on each fiber introduces an increase of the
length of those intervals which is exp( —n““*). Therefore,

where
I1,) <exp(—n“*) + ¢, exp(—c n"*)r,.
We want that

log N, = o(n“*).
But this is the case because of ( **) and

p 4a
—_ >
e+f a

APPENDIX. AN ExaMPLE OF HYPER-GEVREY
FUNCTIONALS ASSOCIATED TO AN ITO SDE

Al. A Classical Majoration for a Multiplicative Stochastic Integral
For 4 € M,(R), we shall denote by | 4], its Hilbert-Schmidt norm,
1A, = (tr(A"4))"2,

and by |4, its uniform norm,

|4x]

ve R0} I x|

Al =
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It 1s well known that
V(A4, B)e M(R)? IAB|, <|i4ll.. 1Bl .
vAeM,(R), 1Al =4Il ,
YAeM,(R), [tr(A)| <n | 4] ..

The following result is close to Théoréme 3 from Ibero [6].

LEMMA Al.l.  Given a stochastic differential equation defined on GL,(R)
(mz=1),
d
dM =M ( Y A,dx') (d=1)
MOy=1

(we have set dx"(1) = dt), where the A, are adapted matrix-valued functionals
with |A,|, <co. then there exists constants ¢, >0 and ¢, >0 depending only
on d, m and ¢, such that:

YR=1, P( sup |[M(t)f,. = R)<c, exp(—c,yilog R)?).

re[0.1]

Proof. Let us denote by 4,, .., 4,, the eigenvalues of M'M. And let

122

VreN, Q.(x, 1) =(M(t) M(1))".

Then let us compute the drift term with the help of It6 calculus,

o
dQ,.=<Z (Z M(A,A) M-+ MAM - MAM -

i=1

+Z...fAI,'M...'A‘,'M,..>+Z...MA6M...

+Z---M'A(‘,M--->dr,

where the first inner sum has r? terms, each of the next two r(r —1)/2 and
each of the outer sums r. Defining ¢, = tr(Q,) then one has

rr—

2 2 2 l
dg, <||M|* <dmc(,r2 + 2dmc ), 21'('(,m>dr.

Therefore,

dg, < |M||% 2mey(1 + dey) r? de.



HYPER-GEVREY FUNCTIONALS 213

But

IM|* =sup 4} <q,.

St

Therefore ¢, ¢ is a submartingale, where

¢, =2mey( 1 +dey) r?

Let

T, r=inf{t>0]g,(1)=R"};
then

Elexpl —¢, T, ) R*)<q,(0)=m,

from which we get

P(T, < l)exp{—c,) R*<m;
that is,

PiT, x<)y<mexp(c,—2rlog R).

Let 4 =2mcy(1 +dc,) and let r,= E(*2%); then ¢, = Ary <r,log R, whence

r

¢, —2rolog R< —rylog R

ra

log R)?
—Q—g;—l—+logR

VAN

log R)> 1 L
e Ry L Lttog R+ 2]
A pya

A

and

P(T. <ly<mexple,, —2r,log R}

Fits ro

1 log R)*
< nexp <%> exp <—(i‘§;—)—>.

But from ¢, > | M| % it follows that

{ sup [M(D)l, 2R} =} sup g,(t)>R"]

te{0.1] te[0.1]

< {Tm.R< 1}’
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whence we get the result with

¢; =mexp <%> =mexp(mecy(l +dcy))

and

1 1
2 dmey(1 +dey)’

Cy=

A2. Best Approximation of an Itoé Functional by
Functions of a Finite Number of Variables

Given an increasing sequence V', (n€ N) of finite-dimensional subspaces
of H, then for every fe# *3(X) the martingale f, = E'*(f) converges
towards f in # > X). The reduction of f consists in choosing a good
sequence ¥, (neN) such that

(1) f, “approximates well” f
{2) dim(¥,) has a controlled growth.

For a general smooth functional £, it i1s not possible to ensure a priori the
control stated in (2). But in the case of It functionals this control is
possible. We shall obtain it through the machinery introduced to prove the
compactness of certain subsets of L3(X) in [4]. We shall denote by e,
(s e N) the Haar basis of L*([0, 1]) defined by

vkeN,Vjie[0,2" —1],¥re[0,1]
Cahy ;1) =2 :(1[/ 2 ki ny2k-lF) — 1[(2,+ D2kt n2-6r))

and
ey=1.
Let
A, LA[0,17) - LX[0, 1])

be given by A,e, =2"¢, whenever s=2+; with je[0,2¥—1] and

av s

A,eo=e,. Let us define .4,: H— H by
"L‘lzj_luAa"‘j'

We shall work under the following hypothesis:
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(#) Let us consider on R" the following Stratonovitch stochastic
differential equation:

d
de(t)=) o,(v (1)) dx (1), 0 (0)=0 (i)

=0

(we have again set dx®(t)=dt), and let g(x)=v (1). We assume that the o*
(1 <a<<n) and all their partial derivatives of order at most three are bounded
in absolute value by a constant M and we denote g(x)=v (1)

A2.1. Computation of the First Derivative
The first derivative 1s given (see [11]) by

D.g=J,..=J,. ()(Jrko)il

where J,_, is obtained by solving the /inear stochastic differential
equation,

d
d,-Jz‘ ()=<Z A,(l’\(T))d.\'i(T)>J”, 0 Jooo=1, (i1)
i=0
where A is defined by
. Cal
AN =256 (afe{ln})

Then M(t)=(J,_,) ' is given by the following stochastic differential
equation:

1%
dM(t)= —M(7) < Z Ao ) dx'(t)+ Aylv (1)) dr>. MO)=1
i=1

In coordinates (i1) takes the form:

d n
d.J3F =% % Ao NIl dxi(ty, Iyl o=6,,.
=1

t—0
i=0 y

A22. Computation of the Second Derivative
We shall use the mechanism of prolongation introduced by Malliavin [9,
p. 228]. We have

D.Dg=[(D.J, o)—J, oI (DI 1T ).

10

We therefore have to compute, 7 being fixed, D,J,._ ,. Then we have

D.J._,=0 if 7'>t

T 0

SRO 129 1-15
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Let us write V°=R” and let us denote by V' the principal bundle
V?x GL,(R). Then let us define vector fields o} on ¥' by

(7,1(1'()» Pi=(o,(ve) A:{vy)7)

This makes sense because Z, = A,(v,)y defines a vector field on GL, (R)
(the tangent space gl,(R) to GL,(R) being naturally identified to M, (R)).
Then, setting v'(7)= (v (7}, J,_,), the conjunction of Egs. (i) and (ii) can
be written as

de (1) =) al(vi(t) dx(1), vi(0)y=1(0, D). (1ii)

i
i=0

We shall treat the computation of the second derivative by the
procedure we have already used for (i); we have to differentiate along the
vertical component GL (R) of the fibre bundle. We choose a basis
(€x ) cacnicp<n Of the Lie algebra gl (R) and we differentiate on the
right:

d
C.ule, y)=—u(v, y explee)).
de

Then the vector fields (A4,(¢v)y), <, <, are invariant under this differentiation
because it is performed on the right, therefore, defining A'=do'/0v, we
have

H

4]
A} e End(R" x gl (R)), A!=<A’ Q; ) (iv)
)

where Q,€ End(R” x gl,(R}) is defined by

Then we introduce the jacobian matrix
J!. _,€End(R"x gl (R))

defined by

o
d,J:.k[,:<Z A}(v(t’))dx’(r'))Jj.“(,, Jooo=1L (v)

i=0
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Taking (iv) into account we have
S (Jeea 0
e 07 0 1 :
iRy

. D,D,,g>

* *

Then
j:~ U(J:'. o) l:<
Denoting M| =(J!. )" we have again that M is given by
o
d-M!.=-M. < > Ale 7)) d.\"(t’)), M)=1

i=0

A23. A Tensor Product Norm
Let G be a Hilbert space; for each a e [0, 1] we shall define

T
with

Ip(e)—p(t'y) >
R

HPH 2#.,1(” = .U[() 1)?

with the natural scalar product

(p()y—p(t') | glr)y—qg(t')

I’*t’|'+2“

P @) ey = H Y6 e ar

Yro.1)°

#,G)={p:[0.11 -G |p(0)y=0and |p|| , ;< +x}

(vi)

We shall abbreviate #,(R) in .#,. For 4: [0, 1]°> - R, we shall denote, for

each xe [0, 1], by A, the partial function,

h:[0,1]—R

y—=hix, )

We consider the space .#,([0, 1 ]; .#,([0,1])). Its norm is defined by

dx dx’
i\__ \_1|1 + 2a

J b =Rl =[111%, & ».-
[o.1]2

Thus it is easily seen that

ds ds' dr dr'

2 _ N ’
HhH HALON T #0110 J[o A,,(A, sLtt W’
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where

Als, s 68y =(h(s, ) —his, 1) —h(s', )+ his', ')~

THEOREM A2.3.1.  For any a <! there exists a constant ¢, depending only
on n, d, and the uniform norm of the first three derivatives of the o, such that:

2) 12 } .
E( HD(-,A)gH,)V{,([().I]; va([o,l]))®R") K, {vir)

Remark. D'’.g is R"-valued, which explains the presence of R” in the
tensor product.

Proof. By the above, we have
Dg=J . oJ.. )",
whence
Dr' Drg=(Dr"]lk())J:.vl.()_‘]]H()J:lo(Dr'Jrv— (l)J;lw

The finiteness of the norm in (vii} results by a direct computation
from 2.1, the Burkholder-Gundy inequalities [2, Theorem 5.1] and
Lemma A.1.1. ]

A24. The Reduction Theorem

We denote by V, the subspace of L3([0, 1]) generated by the e, for
0 <k <n. The Hilbert space splitting,
H=V,®V,

"t

induces the following decomposition of X:
X=Seg(V,)®Seg( V).

Let u# be a G-valued function on X, G being an Hilbert space, and let x
correspond to (v, y) as above; then we shall set

u(v, ¥y) =u(y).

LemMa A24.1. Let G be an Hilbert space, let u be a G-valued function
on X, then one has

N + o pi2
JV HVY”‘rHI]’,P( Y;u@(;)d.u V,,(U)=JX< Z HDeku(—“)H?;> dﬂ(x)-

k=n+1

Proof. That is' a result of Cruzeiro [3, pp. 210-2111].
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CoOROLLARY A24.2 Let u=Vg; then
Elflully, o) Scn ™,

where ¢, is the constant depending only on a and M appearing in the
hiypothesis (A).

Proof. From Lemma A24.]1 we get

E<z<Dngf><nﬁWDTm;ﬂm-l

k=n

LEmMMa A243. Let Y be a Gaussian space, and let ¢ % >N YY), then we
have

M’ - E(QS)H £ < HVQN LAY Hy-

Proof. Let C, denote the nth Wiener chaos on Y (i.e. the closed sub-
space of L?(Y) spanned by the Hermite polynomials of degree » in the
elements of an orthonormal basis of H contained in Y’). It is well known
that L*(¥) is the orthogonal direct sum of C,; let ¢ =3 " ¢, correspond
to this decomposition. We can write

with V¢,eC,_,® H. By well-known facts concerning the Hermite
polynomials, we have

2 2
Vne Nw HV¢11H ;‘31 Y.y = n “4)::“ 135 Y

which implies the theorem. ||

Remark. The same inequality holds in each L” (p>1) up to a
multiplicative constant that depends on p by using the Clark-Ocone
representation formula (see the proof of Corollary 4.4 above).

THEOREM A24.4. Let g be as in Theorem 1.1, and let u=Vg; then
E(E"g—gli)<c,n ™
Proof. Applying Corollary A2.4.2 and Lemma A24.3, we get

E( HE""g_g“il) S E( Hll,”%-’y(@”)

\ 2a
<en o1
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