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Abstract. The study of Riemannian stochastic differential geometry is almost
as old as the theory of stochastic differential equations themselves. But almost
nothing is known about stochastic symplectic geometry. Using only the geo-
metrical content of the heat equation (in a sense inspired by E. Cartan) and
its relations with quantum dynamics, we present here the first steps toward
such a stochastic version of symplectic geometry.
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1. Introduction

The purpose of this paper is to provide proofs for all the statements made in our
Comptes Rendus note [7]. :
The Schrédinger equation for a particle of mass m in a potential V' in R™:

o R
B2 = A+ V
"t 2m vV,
can be written, forn =1,V =0and m =1, as:
O r? 9%y
ho = - = Hy.
o T 2 ag - Y

In Euclidean Quantum Mechanics ([3, 10, 11, 12, 13]) this equation splits
into:
into o -

o = 208 )
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and
oy h 8% c
ot~ 20¢% (C2)

the probability density being given, not, as usual, by ¥, but by 7m,, n et 7,
denoting respectively an everywhere strictly positive solution of (C1) and an ev-
erywhere strictly positive solution of (Cz). A Bernstein process z is then naturally
associated with the situation; it satisfies the stochastic differential equation:

dz(t) = Vhdw(t) + B(t, z(t))dt (By)

relatively to the canonical increasing filtration for the Brownian w, and the sto-
chastic differential equation

duz(t) = Vhdaw, (t) + B.(t, 2(t))dt (B2)
relatively to the canonical decreasing filtration for the Brownian w,, where
_ on n.
B =4ef h,—%i, and B, =45 —h-27

Images of Bernstein processes under symmetries of the heat equation can be
obtained by a purely algebraic concept of stochastic quadrature: if we consider an
isovector (see §2) N, then UY = e*N maps 7 to a solution Ne = UN(n) of (C}),
and z to a process z, associated with Mo Whose law P, is absolutely continuous

with respect to P, with density d(ﬁ: =hyg = —'%)ﬁ ; more precisely:

Theoremﬂl.l (Theorem 4 of [7]). Let N = —Vy correspond to an isovector, so that
Us = N preserve positivity, and n be the particular solution of (Cy) defining the
process z(t), ¢ € [to, 11], with law P. By definition of the symmetry group of (Cy),
Na(q,t) = (Uan)(q,t) solves the same equation. Then hy, = 1= is g s}fm'ctly positive
martingale of z(t), and, if 2%(t) denotes the process assocz'at:lzd with Ny, its law P,
is absolutely continuous with respect to P with %5.; = hy. If

:
E(eap(y [ 1B - Bi?dr) < +oo,

then z*(t) is an h-transform of z(t), with drift

B(q,1) = B(qt) + ha
dq

Proof. The only property to check is that h, is a (strictly positive) martingale.

Now, according to (B;) and the definition of the drift B, the generator of the
process can be written

Inhy(g,1).

. -9 hd?
D=2 i =B 4+
En + L, with L Baq + 3 aqz.

Equivalently, for f of C*®-class,

Bilant) = 1 (35 — 3 Ho) (7).

Hamillton-Jaconl-peuan muauion 1o

In particular
= 1,8 1 Na
Dh, = ~(= — =Hp)(—n) =0
77( otk 0)( " n)
by construction. 0

Applying this result first to Ny, and then to ~%N6 (with the notations of §2),
we recover, for the special case of the Brownian motion, i.e. the trivial solution
n=1of (C,), firstly the scaling invariance of Brownian motion, and secondly the
expression of the “Brownian bridge”in terms of Brownian motion; the details are
given in §7.

Theorem 1.1 has a counterpart with respect to the decreasing filtration. This
is the case of all the ulterior results, formulated only for (C;), without lack of
generality.

Both authors wish to thank the organizers of the Ascona Conference (May
2002) for the opportunity to lecture upon these matters. The first author heartily
thanks the Grupo de Fisica-Matemética (Lisboa) for numerous invitations between
1999 and 2001, during which most of the work on this paper was done.

2. The complete Lie algebra of isovectors for the
Hamilton-Jacobi-Bellman equation

We shall make explicit, in a slightly more general context, the result of calculations
analogous (and in fact formally equivalent) to those contained in [6], pp. 657-659.
Let us consider the heat equation (Cy) (for & # 0):

o __noty 0
At~ 20¢%
Setting S = ~iin(¢)), one obtains the Hamilton-Jacobi-Bellman equation:

89S ho*S 1,08

2
= 2o¢ 20 @
In order to deal with differential forms, we have to reduce that equation to a
system of first order equations. For that purpose, let £ = —%% (formal energy) and
B = “’%&S (formal momentum: cf. the above definition of B) ; then any solution

of (2) will annul the following differential forms on M = R:
w=dS + Edt + Bdg,

(by definition of B and E) ;
dw = dEdt + dBdg,

(by Schwarz’ Theorem) and
1 h
B=(E+ 5B?)dth + 5B

(because of (2)).
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From now on we shall always, except when otherwise stated, consider ¢, q,
'S, E and B as independent variables, that is as coordinates in the state space
M = R".

As

df} = dEdqdt + BdBdqdt = —~dgd Edt + BdtdBdg = (—dq + Bdt)dw,

d belongs to the ideal 7 of A = A T*(M) generated by w, dw and 3; therefore T
is the smallest differential ideal of A containing both w and . As usual, we shall
term isovector for 7 a vector field N on M such that:

CN(I) C I,

where £y denotes the Lie derivative with respect to N. By Cartan’s results ([1, 2,
these N’s constitute the Lie algebra G of the symmetry group G of the equation.
It is well known that the generic form of an N € H is given by :

\Y \% v \Y \Y
N = Nt___ 4 N NS—“‘ NE___ B_Y
vt ve NV ws PV vt 9B
where, by definition
N' = 2k0t2 + 2kqt + ky (3)
N9 = q(ZIC(;t -+ ka) - lest -+ kz (4)
N¥ = ke(ht — q°) + 2ksq — hky — heh g
N" = —kg(2qB + 4E + h) + 2ks B — 2k, E + e+ (hg, — Eg) (5)
NP = —kyB — 2ks + 2kg(g — tB) + e’ (hg, — Bg), (6)
ky,..., ke denoting arbitrary real constants and g an arbitrary solution of (1).

These formulas coincide, modulo the appropriate identifications, with formula
(2.57) in 9], p. 122.

The algebra G therefore possesses a canonical generating system given by
Ny, ..., Ng and the Ny(g solution of (1)), each N; being given by k; = 1 , ki =0
for j # i and g =0, and N, by all k; = 0, i.e,

o 0 15}
Nl—-é? sz—ég, N3 = ﬁf&;
d 0 0 0
Ny=2t— +q=— ~2F— — B—
R T e ) (7)

o 15} o d

a Io] o o o}

Ng =28 = + 2t — + (it — ¢*) == — (2qB + 4tE + h)— + 2(q — tB)—

and

s 0 S o s o
N, = —her g+ e% (hg, — Eg)—— + e (hg, — Bg)—2 .
g e gaS + e* (hg, Eg)@E +e* (g, — Bg) 55

1amuron-J aCovl-DENIAL Ly uauiui

3. The structure of the Lie algebra G
With the notations of §2, an easy computation shows that:
[NI,NQ] = 05 [NlaNW] = 07 [N17N4] = 2N19 [N11N5] = _2N2»
[N1, Ng] = 2N4 — Ny, [N1, Ny] = Ny, (as g is a solution of (1), so is g:),
2
[N2, N3] =0, [Na, Ny = Ny, [Nz, Ns] = “ENS,
[Na, Ng] = —=Ns, [N, Ng] = Ny, (as g satisfies (1), so does 9q)»
[N3, Ng] =0, [N3,Ns] =0, [N3, Ng] =0, [N3, Ng] = =Ny = N_g,

[N4, Nr,] = Ns, [N4, N(;] = QN(;, [N4, Ng] g N219¢+ngv (2tgt + ng satisfies (l)),
[Ns, Ns] = 0, [N5,NgJ =N2,0 0.

[NG’NSI} - N2t29¢+21ng+gt-9-g—%’ [Ng’ Ng’] = 0.

Let H denote the subspace of G generated by N;,...,Ng, J the subspace of
the N, (g solution of (1)), H; the subspace generated by N3, and Hoy the subspace
generated by N3, N3 and N5. Then it follows from the commutation relations that:

‘H is a subalgebra of G,

J is an abelian subalgebra of G and [H, 7] C J.

As, obviously, G = H ® J, we have: [G,J] C J.
G therefore appears as the semi-direct product of a 6-dimensional subalgebra H

and an infinite-dimensional abelian ideal 7.
It is easy to analyze the structure of H: the commutation relations yield that:

H, = RN; C Z(H),

and that
‘Hy is an ideal of H.

Let h denote the class modulo H; of h € H ; then:
[Ny, No] =0, [Ny, N4] = 2Ny, [Ny, Ns] = —2N», [Ny, Ng] = 2N,
{N21 ]\74] = NQ» []\721]\75] = Oy [N29]\76] = ‘—N5,
[Ny, Ns| = Ns, [Ny, Ng| = 2Ng, [Ns,Ne| = 0.

In the natural semi-direct product slz(R) x R?, let:

e=(g 3)7][:(? g>»h:<(]) fl>,x:(1,o),y:(0,1).

Then, as is well known:
[hye] = 2e, [h, f] = =2f, e, f] = h, [h,2] = h(z)

[hoy) = h(y) = -y, le,2] = e(z) = 0, [e,y] = e(y)
(f,z] = flz) =y, [fiy)=fly) =0, [z,y] =0

x’
:Ev



Therefore the application:
Nl = —€, Nz =, ]\74 = —h, Ns — 2y, 1\76 - 2f

induces an isomorphism of Lie algebras:

H]il ~ sly(R) x R?.

In this isomorphism, %‘11 corresponds to < z,2y > = R?, whence:

H
o sly(R), t.e. — ~ slH(R).
sla(R), d.e e sl2(R)

BAESEARS

As
2
[N2, N3] = 0, [Ny, N5] = "'h'N:s, [NV3, Ns] =0,
one sees that Hy is a three-dimensional Heisenberg algebra having for its center
the subspace Hy = RN; generated by Ns. But

H
o ~ sly(R)

has trivial center, hence Z(H) C Hy, whence Z(H) C Z(Ho) = H, C Z(H),and :
Z(H) = Z(Hy) = H;.
We set:
Ha = Vect(Ny, Na, Ny, Ny);
this is a subalgebra of H, hence of G.

4. The bilinear form
For N € H, we shall set:

Oy = —N% = ke(q? — ht) — 2ksq + k3h. (8)
This ®x coincides with the phase defined in [10], pp. 317-318. It is visible that
Oy depends only upon g and t. We also set:

TLN:NtE+NqB-—@N. (9)

Definition 4.1. For any (8,6') € (T*(M)*)?(the space of pairs of C*-vector fields
on M = R5), let:

’ t

0(5,6) = (5(B)6 (g) - 8()8 (B)) + (8(B)S (1) - 5(1)8' (B)).

It is clear that € is a bilinear and antisymmetric mapping from (71(M)*)2
to Co°(M).

The key to our subsequent computations is:
Proposition 4.2. For arbitrary N € H and § in TH{M)*, one has:
QN,8) = —b(ny).
Proof. By Definition 4.1 and the definition (9) of ny, one has, with the notations
of §3:
QN,6) + 8(nn) = N(B)S(q) — N(g)d(B) + N(E)S(t) — N(t)5(E)
+6(EN' + BN - &y)
= N(B)i(q) - N(q)é(B) + N(E)i(t) — N(t)6(E)
+0(E)N* + E§(N') + 6(B)N? + BS(N) — §(Pn)
NB§(q) + NE5(t) + ES(N') + BS(N7) — 6(®n)
— kg B8(q) — 2k56(q) + 2ksqd(q) — 2ket Bd(q) — 2keqB4(t)
— 4kt ES(t) — hkeS(t) + 2ks BS(t) — 2k4 ES(t) + ES(NY)
+ BS(NT) — §(Pn)
ES§(N' — 2kgt? — 2kgt) + B6(N? — kaq — 2kslq + 2kst)
+ 8(—2ksq + keq® — hket — ®N)
= Eb§(ky) + Bd(kz) + 6(—hky)

i

il

i

= 0.
Lemma 4.3. For each N € 'H, one has:
ON1 dNt  hd*Nt B BdN' 8N
: E__ _puly’ L4l R4V = oV oV
(‘)N_Bat Edt 4 dt? and N 2@ o
.. dN? ON1
(ll) 7—2—6(1—

Proof. This is apparent from formulas (3), (4), (5) and (8).

5. Sectioning

Definition 5.1. We shall call
wpe = Edt + Bdq = w — dS

the Poincaré-Cartan form, and

=3

the formal free Lagrangian.
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Proposition 5.2. Let n be a given, everywhere > 0, solution of (1). Then there
ezists a unique morphism of graded differential algebras 6, : A — B = \T*(R?)
such that, denoting by (t,q) the generic point of R?, one has:

0,(t) = t, Oy(q) = g, 04(S) = ~hln(n),

h
oy B0

__hon
"7( )"7—7‘(%797]( ) o

" ndg

In addition T C ker(6,), whence 6, induces a mapping 9_,7 : “% - B.

Proof. The existence and uniqueness of 8, follows from the usual universal prop-
erties of the exterior algebra. In order to show that Z C ker(8,), it is enough to

see that w and 8 belong to ker(6,). For w it is obvious, and for p it follows from
the equivalence of (1) and (2), and the definitions of E and B. O

We shall call 6, the section map relative to 7.

_ From now on, we shall fix a solution > 0 of (1), and denote S = 0,(5),
E =0,(F) and B = 0,(B).

Corollary 5.3.
9,'(wpc) = Bd(] -+ Edt
Proof. One has, by the definitions of wpe and .
Oy(wpc) = b0,(w — dS) = Oy(w) = 0,(dS) = 6, (w) — d(6,(5)).
But 8, (w) = 0 by the proof of Proposition 5.2, whence:

Oy(wpc) = ~d(6,(S)) = —d(~hIn(n)) = %dn = Bdq + Bdt. 0

Lemma 5.4.
(i) For each N € H, O,(nn) = fi%‘lﬂ, where

9] 0
— NI

VN Sef Ntat %

- 20y € T(RY

acts on functions of (q,1t).
(ii) For each N &€ Ha, 6,(N(B)) = Sn(B) and 0,(N(E)) = Sn(E), where 6y

denotes the variation associated with N in the sense of (13], §6, formula (60).

Proof. (i) One has:

9,,(711\/) = en(NtE + NB - CDN) = Hn(Nt)gn(E) + 977(Nq)‘9n(B) - '917((I’N>
= N'E+NIB -y

Mamutol-Jd aCOLI-DELLLIa Y uatlul PR

(as N*, N7 and ®y depend only upon g and t, by formulas (3), (4) and (8)),
whence: ) . 5 5 o
10n 19n Lo a0 PN
— Nip— L ap_ - L N9 L L
91,(17,]\/) =N hn ot + N h’l’] 3 DN T’(N En -+ B i 77)

by definition of V.
(ii) As N € Ha, ks = kg = 0, whence one has:

0,(N(B)) = 0,(NB) = 0,(~kyB — 2ks + 2ks(q — tB)) = 0,(—k4B)

= — k40, (B) = —k4B = —B(2ket + k4) = —B——
(using (4) and the fact that k¢ = 0). But this equals 6 (B) by Lemma 1, p. 401,
in [13] (modulo a misprint in the sign). Similarly, one sees that:

0 (N(E)) = 0,(N®) = 0,(~2ks ) = ~ 2k, (E)
t

= n(E). =]

~ -~ dN
2kq di

Leth:9noQ:H2——aB.

Lemma 5.5. For N € Hy and N' € My, Q,(N, N') coincides with the bilinear form
Qn(dn,8y7) as defined in [13], Definition 3, p. 402.
Proof. One has:
Q,(N,N') = 6,(N,N"))

= 0,((N(B)N'(g) = N(q)N'(B)) + (N(E)N'(t) = N(t)N (E)))

{(by Definition 4.1)
? IB
= (62(NP)0,(N'") = 0,(NT)B,(N"))
it B
+ (B, (NP)0,(N'') = 0,(N*)8,(N"")).

But N*' depends only upon ¢ and t, therefore 6,(N*) = N' = dn(t), and
similarly 6,(N?) = N9 = dy(q). By Lemma 5.4.(ii) we have 6,(N*®) = dn(B) and
9,(NP) = §n(E), and similarly for N, whence: ) ]
(N, N') = (6n(B)oy (q) — On(q)on (B)) + (6n(E)Sp (t) — Sn(t)dx (E)) ;
Qn(6n,0n7).

Our main result connects the canonical stochastic differential 2-form and the
Lie algebra structure of G:

Theorem 5.6. For (N,N') € H2, one has:
- hV[N,N’]T].

Q,(N,N) -



Proof. One has:
[N,N']' = [N,N'](t) = (NN = N'N)(1)
= N(N'(t)) - N'(N(1)) = N(N"*) = N'(N*)
and similarly
N, N7 = N(N'") = N'(N) and [N,N']S = N(N"") = N'(N9),
that is: ,
By ny=N(@y) — N (Bn).
But, by Proposition 4.2, one may write:
QN,N') = —hN'(ny), where ny = N'E+ NIB — ®y.
Therefore:
Q(N,N')= N'(®y - N'E — NB)
= N'(®n) — N (NYE - N'N'(E) - N (N)B — NIN'(B)

2 1q 1t
, . dN AN hd?N
= N(®n)— N (NYE - NH(—E - B =z
(®n) (V) =5 ot 4 di?
BdN'' oN'?

N NDB = N5+ ),

according to Lemma 4.3.(i) applied to N'.
Whence:

2UN,N) = QN,N') - QN , N)
= N'(®n) = N(@,) — EN' (N') + EN(N'")

ot
th _ ltflﬁ
+EWN' = = N )
ON'®  ONT. h _ &N'" td®N!
t _ (Nt —_
+B(N ot N at) 4(N dt? N dt2)
NN peONT AN 0N
B(N D + N 3 y+ B(N 5 - N Bq )
it 1q
B dN 1qdN*t ON qONY9
(NI N Ty NY N T
+ 2( dt dt) T ot
‘1t
:N'(<I>N)—-N(<I>N/)+2E[N,N']t+gﬂ]%v—]—
6 ’ 4 q e
12BN’y - 2BN'(N7) + (V2N a9
ot ot
/t /q
B _dN rqdN* ¢ ON? AN
. q - - P q
SN — N )+ BV dq N (9(1)

, . . hd[N,N']t

ot ot )

it
where we have used, once more, that N' and N depend only upon t, and N9 and
N'? only upon q and t, and also Lemma 4.3.(ii), applied to N and N . But:
AONT 0Py d*Nt 40Py
=, and ——m = ———F—
ot dq dt? h ot

(this follows from (3),(4) and (8), and also from {10], Lemma 3.5, p. 318), whence:

AN, N SN N
dt di? d?
40P t 4 00
= NY(— 222Ny YN
775 5
and

qONY oN"? 1q P OF s
N — N9 =N"TTN L Ne TN
ot At 5 N dq

from which follows

hd[N,N']! qONT AN’
i a W o Vo)
_ ~]vtafl’]\,l +N/¢3‘I)N +N'(18(I’N _Nq:?@,\,/

ot ot dq g
= N'(By) = N(@y1),

as &y and ¥, depend only upon ¢ and ¢.
Therefore:

20N, N') = 2(N'(®n) — N(®,+)) + 2E[N,N']' + 2B[N, N’}
= 28y vy + 2E[N,N')' + 2B[N,N']%,
that is: ) , )
Q(NxN ) = [N:N ]tE+ [N’N ](IB - (I)[N,N']
and:
1] !
Q,(N,N ') =8,(Q(N,N))
= 0,(IN,N'T'E+[N,N'B = &y )
= [N,NTE+[N,N"B - &y

h e O a0 PN
= 2N, NP v, N2
77({ ] (%‘H J 3 3 n)

V /
_ NN
n



Corollary 5.7. For (N, N') € Ha x Ha, one has:

N ’
Q,(0n,6y7) = fiL%m.

Proof. By the proof of Theorem 5.6, one has:
Py vy =N(@py) = N (2n) =0,
as ®y and ®, are constant (this can also be deduced from the commutation

relations in §3, which imply that [NV, N/] € Vect(Ny, Na, Ng)}. Therefore:

1, O 1, 0N
nn = to e 1 ,
Vinnn = [N, N'] g +[N,N'| 3 PN N
, 67] ' (')'r]
=[N,N|'L +[N 9=
NN VN
=[N, N']n,
as 1 depends only upon g and t. The result now follows from Theorem 5.6. 4

Remark 5.8. The above Corollary is essentially equivalent to the formula used in
the proof of Theorem 1, p. 402 in [13].

Theorem 5.9. The differential 2-form 2, is closed, i.e. d§}, = 0.

Proof. As is well known ([4]), the 3-form d€1, is defined by the following formula,
for all (N,N',N") e H*:

d,(N,N',N") = N(Q,(N',N")) = N'(2,(N,N")) + N (@, (N, N'))
- QU([N’ NI]! N”) + QU([Nv N”]v N/) - Qn([va N”]’ N)

According to Theorem 5.6, the last three terms add up to

h
5[*"({1\/,1\]’],1\1"]’7 + Vi vy = Vv vl
h
- HV[N.&N',N”MN’,{N”,NnHN”.[N,N'n”
h
= EV()'I’] (by the Jacobi identity)
=0

Therefore, by the antisymmetry of 2, one finds:
A2, (N, N',N") = N(Q,(N',N")) + N'(Q,(N", N)) + N (@, (N, N')).

But this is easily computed to be zero. O

Corollaries 5.3 and 5.7 and Theorem 5.9 together yield Theorem 1 of [7],

modulo the correction of a misprint there; in the first line of “Théoréme 17, one .

has to read “6,(wpc)”instead of “8,(w)”.

6. An algebraic version of the Ité differential

The following two results provide, in a purely algebraic way, stochastic analogue
of some classical formulas of Analytical Mechanics. Let us denote by D the forme
total derivative along the Bernstein process associated with 1) (cf. the introductio:

and [10, 11]):

7] 0 h 8
D=&+Bz§a+§-a-'q§.

Theorem 6.1. For each N € H, Ly{wpc) = dPn.

Proof. By the well-known formal properties of the Lie derivative (see for it
stance [6],p. 654), one has:
Ly(wpc) = Ly(Edt + Bdg)

= Ln(E)dt + ECy(dt) + Ln(B)dg + BLn(dg)

= NFdt + Ed(Ln(t)) + NBdq + Bd(Ln(g))

= NEdt + EdN* + NBdq + BdN".

But, using formulas (3), (4), (5) and (6), this is easily seen to equal:
—hkedt — 2ksdg + 2ksqdq = d(keq® — 2ksq — kelit) = d®n. [

We have established yet another coincidence between our results and com
putations using 1té’s formula in [10].

Theorem 6.2. For each N € H,
Ln(L)+ L——C—l-t— =DPy.
Proof. One has:
1
Ln(L)=N(L) = N(-2-B2) = BN(B) = BN® = B(—k4B — 2ks + 2keq — 2kst B

B2
= —kyB% — 2ks B + 2kqB — 2kst B® = — = (2ka + 4kgt) + 2keqB — 2ks.

2

= ——B—i(2k6t2 + 2k4t + kl) — keh + B(Qk‘g(] - 2k5) -+ E(zk(;)
2 dt 2
dNt  0dy 0dy  hOPdy dN?

= - =—-L— + D®y.
Lt "% Y2 a T

By Theorems 6.1 and 6.2 are justified all the assertions made in [7], Theoren
2 and 3, modulo a misprint in “Théoréme 3”: instead of “B”, read “B”.
The probabilistic interpretation of all our results is founded on the observ.

tion that

)
§(q 1) = Eal / wre)
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where E,; denotes the conditional expectation given that z(t) = ¢, and z is the
Bernstein process of the Introduction. Using Definition 5.1 we have, more explicitly,
under integrability condition
~ T T .
S(g,t) = Eq,t(/ L(Dz(r))dr) = E‘,I,t(/ §B2(z(7),7)d7).
t t

Of course, wpc when evaluated along the paths of z(7), has to be interpreted
in the Stratonovich sense. Theorem 6.2, for instance, is a stochastic condition of
invariance of the Lagrangian L under the symmetry group built from the one of
{C1). It was originally found ({10, 11]) at the expense of long sessions of Itd calculus,
both in the flat and in the Riemannian case ([12]).

In conclusion, let us observe that Euclidean Quantum Mechanics is in no way
restricted to diffusion processes ([14]). So the geometrical methods introduced here
should hold more generally.

7. Two interesting particular cases

7.1. Case 1: Scaled Brownian motion

Let us consider the generator Ny (cf. (7)), let a € R, let U, = >N+ and let 1 be
a solution of (1). Then, as

. o 0
N = e e — _—_
T T aq’

it is readily seen that UM+ = eNa maps 1(q,t) to nle”*q, e~2).
Moreover, e*N* maps (T, Q) to (€**T, e*Q), whence

2%(t) = e“z(e™2"t).
In the case n = 1, we find 1, = 1. Applying (B;) to n and w,we find that
2(t) = Vhw(t);

2a

setting now e™“® = ¢, it appears that, whenever w is a Brownian motion,

w(t) Sdes e"%w(et)

is also one, for any € > 0. Thus have we (re)established the scaling invariance of
the Brownian motion, as claimed in [7], p. 266, and in §2 above.

As a matter of fact, N4 provides the complete collection of Bernstein processes

satisfying such a property. Of course for n # 1, we obtain a transformation of the -

starting diffusion and not an invariance.

7.2. Case 2: Brownian bridge
Let us here set n =1 and

1
N = —=Ng
51V
whence ) . 5 5 .
g J 2 2
= —~=-Ng = — = {5 _— — ht).
N =—5Ns =V =t 5 +atg = 329 )
Let o € R; then UY maps n(g, 1) to

1 ’2012 q b

\/1—mte i n(l—at’l—at

Also, eV maps (T, Q) to (

).

T Q ; ; .
TFaT l+aT) whence , in particular:

)= (1 - at .
2(1) = (1 - at)a(——)
In the case 17 = 1, one has:
N N 1 ___aq?
ha:—: Q:Uu 1) = e :zrs(x—mi7
y =7 (1) = ———ec
and the drift associated with z® is:
. 8 a 1 aq? aq
B* = he(Inna) = A (== In(l — at) — ——0 ) = — ;
z(f?q(nn ) Gq( 2 n(l = o) 2h(l-at)) 1—at
whence z® satisfies the stochastic differential equation:
(a4
t
d22(t) = Vhduw(t) - ‘;‘Z E;Z dt,

and (for a > 0), this defines the usual Brownian bridge, i.e. the standard Brownia
—~1
motion w(t) conditioned by w(a™!) = 0, often denoted by ngg (t).
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