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INTRODUCTION

For G a finite group, let the commutativity degree d(G) of G be defined
by

d(G) = —{(x,y) € G X G Ly =w}|.

1
IGI*

Obviously, G is abelian if and only if d(G) = 1; furthermore, the following
results are known:

(1) If G is not abelian, then d(G) < 3 [3, p. 1032; 6, p. 447; 7,
Théoreme 2).

(2) If d(G) > 4, then G is nilpotent [7, Théoréme 3].

(3) If d(G)=1 and G is not nilpotent, then G/Z(G) = X, and
G' = Z, [8, Théoréme 5].

(4) If L<d(G) <1, then d(G) € {3(1 + 1/4")In €N, n > 1} [11,
p. 246}

All these results can be interpreted and even slightly improved upon by
means of the concept of isoclinism first introduced by Philip Hall [4]. We
shall begin by proving the most elementary properties of d(G), then
remind the reader of this notion. In the third section, we shall determine,
up to isoclinism, all finite groups with d(G) > 1; the above-mentioned
results will follow. Then the computation of the “r-uple” commutativity
degree will be reduced to the case n = 2; finally, we shall reprove a recent
result of Leavitt, Sherman, and Walker [6].
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848 PAUL LESCOT

Let G be a finite group; we denote by £(G) the number of conjugacy
classes in G, by G’ its derived group, by Z(G) its center, and by a;:
(G/Z(G))* - G’ the map defined by

V(x,y) € G*  ay(xZ(G),yZ(G)) = [x,y] =x"ly" gy

(it is easy to see that this definition makes sense).

1. PRELIMINARY RESULTS ON d(G)
LEMMA 1.1 [3, p. 1032; 6, p. 447; 7, Lemme 1]. d(G) = k(G)/I|G]|.

Proof. let C,,...,C, be the conjugacy classes of G, and for i €
{1,...,r}, let x;€C,. For y e, y=xf for some g€ G, whence
Ci(y) = Co(xf) = Ci(x,)* and |Ci(p)l = |C;(x)I. Therefore

IGI*d(G) =|{(x,y) € G X G |xy = yx}|
= 2 |C(;(x)|

X€G

= 2’: Z ICi;( %)

i=1 xe(,;

= i G : Ci (x)C(x)]

i=1

= ) |Gl
i=1

= |Glr

= |Glk(G).

The result follows. [

LEMMA 1.2 [7, Lemme 2; 11, p. 244].  Whenever d(G) > 1, one has

Gl ——
G < Gy =

Proof. For n € N, let p, be the number of irreducible characters of G
that have degree n. The total number of irreducible characters of G is
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k(G) [5, p. 16, Corollary 2.5], and the sum of the squares of their degrees is
|Gl 5, p. 16, Corollary 2.7], whence

kK(G) =X p

i1

IGl = X i%;.

izl

Thus

IGl - py = Z izl%‘

iz2

= 4_2 p;
= 4(k(G) = p)
— 4(IGId(G) - py)

by Lemma 1.1. It follows that

Ll

d(G) < G

3

|-

But p, is the number of linear characters of G, i.e., the number of linear
characters of the abelian group G/G'. Thus p, =|G:G'|; (*) now
becomes

98]

d(G) < - + =

41G'’

B -

from which the assertion of the lemma follows. |

LEMMA 1.3, Let G be a nonabelian p-group; then

+p-1
dGy< 2227
s
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Proof.  Let |G| = p", and |Z(G)| = p™; then m < n — 2, else G/Z(G)
would have order 1 or p, hence be cyclic, and G would be abelian. One
may write

p2d(G) = 1GI"d(G)
= Z |C(;(x)|
xe(
= Z ICe, (X)) + Z ICq (x)I
xEZ(G) rEGNZ(G)
=p"p" + Z ICe(x)]
YEG\Z(G)

<p™'" +p" H(IGI ~1Z(G)))
=p" "+ p" (P = p")
=p" P (p - )
<p"Hp i (p - 1)
=p" (PP +p - 1),

whence the result. |

LEMMA 1.4 [2, pp. 175-176]. Let G be a finite group, and N a normal
subgroup of G, then

d(G) sd(N)d(%).

If N is abelian and one has equality, then N € Z(G).

Proof. Let us assume xy = yx; then

(XN)(yN) = ()N = ()N = (yN)(xN).

Thus

YVyxe &

Co(x)N
——1\7__ < C(;/N(XN)-
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Therefore

IGI*d(G)

Z ICe: ()

xelG

= Z Z ICe (X))

SeG/N res

= X X

SeG/N xe§

Z Z 'C(;/N(S)||Cm'(x)]

SEG/N x€S§

= Z |C(I/N(S)' Z {y € Nlxy = yx}|
SEG/N x€S

= 2 1C;, v (S)] 2 ICq(y) NSl

SeG/N veN

(( )N \ICN(x)l

IA

Let us suppose S N Cy(y) # J, and let x, € § N C,(y); then § = Nx,
whence

SN Cu(y) =Ny N Co(y)
=(Nn Ce(¥))xy
= Cp(y)xy.

Therefore S N C,(y) is either empty, or a left coset of Cy(y); in both
cases one has

S N C(;(.V)l < ICN(Y)I

and

IGI*d(G)

IA

Z ICG/N(S)I Z ICN(Y)'

SeG/N yeN

142 jovram)

= IGlzd(N)d(%).

Hence d(G) < d(N)d(G /N), and equality implies

G
VSe SVyeN  SNCa(y) # @,
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VyeN G =NC;(y)-
If N is abelian, this yields
Vy eN G =C4,(y),

iLe.,

NcZ(G). =

2. ISOCLINISMS BETWEEN GROUPS

We shall generally follow Hall [4], albeit using a more “categorical”
language.

LeEMMA 2.1. Let G and H be two groups, and let ¢: G — H be an
isomorphism. Then ¢ induces isomorphisms ¢,: G /Z(G) — H /Z(H) (given
by Yg € G ¢,(8Z(G)) = ¢(g)Z(H)) and ¢,: G' —» H' (given by Vg € G’
©:(g) = ¢(g)) such that the following diagram commutes:

G G F1X ¢ H H

Z(6) ~ Z(G) Z(H) * Z(H)

ag; ay (* *)

©r

Gl “ 5 H/

Proof. Let (a, B) € (G/Z(G))?; one may write a = g,Z(G) (g, € G)
and B8 =g,Z(G) (g, € G), whence

[ay (e X e)](a, B) =ay(ea), ¢( B))
ay(e(81)Z(H), ¢(8,)Z(H))
[e(21), e(g2)]

e(lg1.8:])

= 902([81’82])

@(ag( e, B))
[e20a6](a, B).

Therefore a;; o(¢, X ¢,) = ¢, ¢ ag, as claimed. [

ff
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This result suggests:

DEFINITION 2.2. Let G and H be two groups; a pair (¢,, ¢,) is termed
an isoclinism from G to H if:

(1) ¢, is an isomorphism from G /Z(G) to H/Z(H);
(2) ¢, is an isomorphism from G’ to H';
(3) the diagram (* *) is commutative.

If there is an isoclinism from G to H, we shall say that G and H are
isoclinic.

Clearly isoclinism is an equivalence relation between groups;, we may
restate Lemma 2.1 as:

LEMMA 2.3.  If G and H are isomorphic, then they are isoclinic.
Basic for our purpose is

LEMMA 2.4. Let G and H be two isoclinic finite groups; then d(G) =
d(H).

Proof. Let (¢,, ¢,) be an isoclinism from G to H; one has

2

iZ’G_) G) - Z@r o 4
_ IZ(E?)IE l{(x,y) € G X G |xy = yx}|
_ I—Tz;)?l{(x,y) €EGXGlxly y =1}
- TZ(_IGW“(X’” € G X Glag(xZ(G),yZ(G)) = 1}|

But this equals
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(because ¢, is an isomorphism)

ool

(because of condition (3) in the definition of isoclinism)

{(%5) 6(-5—)
Z(H)

(because ¢, is an isomorphism).
But, by the above reasoning applied to H in place of G, this expression
equals IH/Z(H)IZd(H), Le.,

4
-

ay(e( @), e B)) = ]}’

2

a(y,8) = 1}‘

>

4(6) =‘

P

d(H).

lZ(G) Z(H)

But G/Z(G) and H/Z(H) are isomorphic (via ¢|), hence |G/Z(G)| =
[H/Z(H)|; the equality d(G) = d(H) follows. 1

PROPOSITION 2.5.  Let GG be any group; then there is a group G, isoclinic
to G and such that Z(G)) € G'\. If G is finite, so is any such G .

Proof. Let F be a free group, and let w: F — G be a surjective
homomorphism. We define

d. F—- G X —
by
VxeF  ¢(x)=(m(x),xF'").

Let T = ¢(F); it is clear that Z(T) = ¢(A), where A = 7 "(Z(G)).
T/T' = $(F)/$(F) is isomorphic to

F/ker(¢) B F )
(F/ker())’  F'ker(¢)’

but

ker(¢p) = ker(w) NF' C F’;
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thus

T F
T°  F'

is free abelian. Z(T)/(Z(T) N T’) is isomorphic to Z(T)T'/T’, hence to
a subgroup of 7/T’; therefore it is free abelian too. We can thus find a
(free abelian) subgroup B of Z(T) such that

Z(T) =B x (Z(T) N T’).

B, as a subgroup of Z(T), is normal in T; we intend to show that

G T
%
satisfies our requirements.
Let us first define
G G,
T -
Z(G)  Z(G))
by
T(a) = (¢(f)B)Z(G)),

where

a=m(f)Z(G) (f€F).

If « = 7(f)Z(G) = w(f,)Z(G), then w(f'f,) = w(f)) 'w(f,) € Z(G),
hence f,'f, € #7'(Z(G)) = A. Therefore

$(f1) ' B(f2) = $(fi'f2) € d(A) = Z(T),

from which it follows that

(6(f)B) (d(f2)B) = (¢(f) "&(f>))B
_AUT)
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and (¢(f)B)Z(G)) = (¢(f,)B)Z(G). We have proved that 7 is well-de-
fined; it is clearly a homomorphism of groups. Obviously,

$(F)B/B _ T/B G,

O =Gy T Z6) T 76y

i.e., 7 is surjective. Let C/B = Z(G,) = Z(T/B); then
[C.T]cT' nB=T'nZ(T)NnB={1},

i.e., C € Z(T) and (the other inclusion being trivial)

T Z(T)
Z(E) "B
In particular
Z(T
Z(Gl) = %
B BX(Z(T)nT")
a B
BT’
B
TV
3]

Let a = 7w(f)Z(G) € ker(7); then o(f)B € Z(G ) = Z(T)/B, ie,
¢(f) € Z(T) = ¢(A), whence f € A ker($p) C A ker(w). It follows that

n(f) € m(A) € Z(G)
and

a=7(f)Z(G) = 1;,10)

i.e., 7 is injective, therefore an isomorphism.
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Obviously,

T"NnB
=T
= ¢(F)
= m(F) x {1}
=G' x{1)
=G,
all the isomorphisms being canonical. We have in fact shown that
o: G - G|
defined by
Vxe G’ o(x)=(x,1)B

is an isomorphism. We shall establish that (7, ¢) is an isoclinism from G
to G,, thereby completing the proot of the proposition. It is now clearly
enough to check condition (3) in Definition 2.2. Then let (a, B) €
(G/Z(GN?, with a = 7(fDZ(GXf, € F) and B = w(f,)Z(GXf, € F).
One has

[a6,°(7% 7)](a, B) = ag(r(a),7(B))
= a((¢(f1)B)Z(G\).(#( /) B)Z(G)))
= [6(f)) B, &(1>) B]
= [¢(f). #(f2)]B
([7(f).7(f2)].1)B
= o([7(f,), 7(f2)])
o(ag(a,B))
=[oeag](a, B).
Thus a; o(7 X 1) = 0 ° a4, as claimed.

If G is finite, so are G/Z(G) and hence G,/Z(G,) = G /Z(G); but
Z(G)) € G, 50 |G, : G| is finite. But G| = G’ is finite, so G, is too. [
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LEMMA 2.6. Let S be a non-abelian simple group; then any group G
isoclinic to S is isomorphic to S X A for some abelian group A.

Proof. One has G' = §' = §, whence G' N Z(G) € Z(G') = {1}. But
G/Z(G) = §/Z(S) = S is perfect, hence G = G'Z(G) = G' X Z(G) =
S X Z(G). The result follows, with 4 = Z(G). |}

LeMMa 2.7. Let G be a group, and H be a subgroup of G such that
G = HZ(G); then G and H are isoclinic. The converse is true if H is finite.

Proof. Uf G = HZ(G), then Z(H) centralizes H and Z(G), hence
centralizes G, thus Z(H) c H n Z(G) € Z(H) and

H H HZ(G)

Z(H) z(G)nH  Z(G)
G

- Z(G)’

the isomorphism i;: H/Z(H) — G /Z(G) being induced by the inclusion
i: H-G.
Furthermore, let (x, y) € G?; then x = h,z, (h, € H, z, € Z(G)) and
y = h,z, (h, € H, z, € Z(G)), whence [x, y] = [hy, h,] € H and G’ =
H’. We have actually proved that (i,, 1.;)) is an isoclinism from H to G.
Conversely, if H is isoclinic to G and is finite, then G /Z(G) = H/Z(H )
is also finite. But

G HZ(G)
]Z(G) 1 #17z(6)

H
HﬂZ(G)|
H Z(H)
Z<H)HHOZ(G)
H
Z(H)

\%

G
]

Thus one has equality all along, and so G = HZ(G). |
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LEMMA 2.8. Let G and H be two isoclinic finite groups; then

IG' N Z(G)| =H' 0 Z(H)I.

Proof. G /Z(G) and H/Z(H) are isomorphic, hence so are (G /Z(G))’
and (H/Z(H))'; but

G , G'Z(G) _ G’
(Z(G)) ©Z(G)  G'nZ(G)

and similarly

H \ H'
(Z(H)) T H A Z(H)

Therefore
|G| G’
IG' N Z(G)l |G n Z(G)
G r
I\ z(6)
H ’
|\ z(H)
Hl
|H' N Z(H)
Y
CH' N Z(H)I
But G’ and H' are isomorphic, whence |G'| = |H’| and the result follows.

We can use the previous lemma to give a new proof of one of Rusin’s
results:

COROLLARY 2.9 [11, p. 242]. Let G be a finite group such that G' N
Z(G) = {1); then there is a finite group K such that d(K) = d(G), K' = G',
and Z(K) = {1}.

Proof. By Proposition 2.5, there is a finite group K isoclinic to G and
such that Z(K) ¢ K'. Then

1Z(K) = 1Z(K) nK'| =1Z(G) n G'| = [{1}] = 1,
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by Lemma 2.8 and the hypothesis on G, ie., Z(K) = {1}. Now the
isoclinism between K and G implies K’ = G’ by definition, and d(K) =
d(G) by Lemma 2.4. |

3. THE CASE d(G) = 1

THEOREM 3.1. Let G be a finite group such that d(G) > 1; then G is
isoclinic to {1}, to an extraspecial 2-group, or to 2.

Proof. By Proposition 2.5, there is a group H isoclinic to G such that
Z(H) C H'; Lemma 2.4 now implies d(H) = d(G) > 5. We may therefore
assume that Z(G) € G'. Lemma 1.2 yields the bound

3
G'l< < = 3.
Y O

Let us now consider two cases:

(1) Z(G) c G'; then Z(G) = {1} (because |G'| € {1, 2, 3D. Let
E={geGIIG:C.(g)l =2},

let n = |G}, and let m = |E|. Clearly there are exactly n — m — 1 elements
g of G such that |G : C;(g)| = 3, whence

= <IGRA(G) = T 1Cu(x)]

xel
n
=n+m-—- + Y IC;(x)]
re(GGCHOl=3
mn | n
<n+ — +(n—-—-m-1)—-
2 ( )3
2n  mn n’
= — 4 =,
3 6 3

ie., m>n — 4. If n < 10, the condition {1} = Z(G) € G’ forces G = Z,,
and we are done. We may therefore assume n > 10, and thus m > n —
4 >n/2+ 1. Now let g € E; by definition of E, |G:C(g)l = 2, there-
fore, as is well known, C;(g) < G and G/C,(g) has order 2, thus is
abelian, i.e,, G' € C.(g), and g € C;(G’). We have shown that

E c Cu(G).
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If follows that |C(G)| = |E|l=m > n/2, ie, |G:Cz(G)| < 2, that is,
G = C;(G'), and G' € Z(G), a contradiction.

(2) Z(G) = G'; then G is nilpotent. For each prime p, let G, be the
Sylow p-subgroup of G. If G, is non-abelian, one has

P

d(G) < d(G,,)d(ac—) < d(G,)

(by Lemma 1.4), whence

1 pr+p-—1
5 <d(G) S_d(G,,)S ——;—*——

(by Lemma 1.3), that is, p* < 2p* + 2p — 2 <2p(p + D and p* < 2p +
2, hence (p — 1)? <3 <4, ie., p <3, thus p=2. Therefore G is the
direct product of its Sylow 2-subgroup G, and an abelian 2-group G,..
Then Z(G) = Z(G,) X G,. and G' = G, thus G, ={1}, ie., G is a
2-group. Now |G'| < 3 forces Z(G) = G' = (1} or |G’| = 2; in the first
case G = {1}, and in the second case Z(G) = G’ has order 2, i.e., G is an
extraspecial 2-group. |

COROLLARY 3.2.  If d(G) = 5, one of the following holds:

(1) G is abelian and d(G) = 1.

Q) G/Z(G) is elementary abelian of order 2*™ for some m > 1,
IG') = 2, and /(G) = 3(1 + 1 /4™) < 3.

(3) G is isoclinic to 25 and d(G) = 1.
Remark. The results (1) to (4) in the Introduction follow immediately.

Proof. By Theorem 3.1, G is isoclinic to {1}, an extraspecial 2-group, or
3 ; the first case leads to (1), and the third one to (3). We may therefore
restrict ourselves to the case in which G is isoclinic to an extraspecial
2-group, and even assume that it is one. In this case it is well known that,
after one identifies G’ with the additive group of the ficld F,, a,; becomes
a non-degenerate alternating bilinear form on G/Z((G) = FJ. Therefore
n = 2m for m the dimension of a maximal totally isotropic subspace of
G/Z(G) for ag; furthermore, for x € G\ Z(G), C(x)/Z(G) is the
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(ST
\e}
X

kernel of the nonzero linear form a (xZ(G), ), hence has order % -
and |C,(x)l = 2" = 22™_ It appears that

IGI*d(G)
Z IC(;( x)l

xel
— 1Z(G)IGI + (IG] - 1Z(G))2>"
=2. 22m+1 + (22m+l . 2)2Zm

— 24m+] + 22m+|

— %.24"14—2(1 + L)

24m+2d(G)

I

4]"

Therefore d(G) = 3(1 + 1/4™). |

Let us define, for r € N, r > 1, a group G, by generators and relations:
G ={o,7rle’=1"=1,7%r=0"").
It is easily seen that G, is isoclinic to X, (in particular d(G,) = 3), that

Z(G,) = {r7), and that G, = (o ); clearly, G, = 3,.

THEOREM 3.3. Let G be a (nonnilpotent) finite group with d(G) =
(““groupe non-nilpotent minimal” in the terminology of 8, 9); then G has a
subgroup H isomorphic to some G, (r > 1) such that G = HZ(G).

(ST

Proof. By Corollary 3.2, |G'| = 3; let G’ = (o ). There is an element x
of G that does not centralize G’ (else G’ would be central in G and G
nilpotent, contradicting Corollary 3.2(3)); necessarily x 'ox = ¢~ '. Let
w(x)=2"Cn + 1); z=x>""" has order 2" and inverts o, therefore
H = (z, o) is isomorphic to G,. But G is isoclinic to X, which is isoclinic
to G,, itself isomorphic (hence, by Lemma 2.3, isoclinic) to H. Lemma 2.7
now yields G = HZ(G). §

If G contains H=G,, then 3 =|H'|<|G’| =3, whence G' = H".
Combined with the proof of Theorem 3.3, this makes clear that the
smallest r such that the conclusion of the said theorem be true equals the
smallest r such that G have a subgroup isomorphic to G,, and
equals the smallest r such that some element of G with order 2° not
centralize G'; we shall denote this integer by r (G).

COROLLARY 3.4. In the context of Theorem 3.3, let us suppose that
r(G) < 2; then G = G, ;, X A for some abelian group A.
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Proof. Let x be a 2-clement of G of minimal order among those
inverting o (where, as above, o is a generator of G'); then xZ(G) is
a 2-element in G/Z(G) = %,, whence u = x* € Z(G). Clearly w(x) =
2" <4, hence o(u) <2.If u = 1then{x,0) =3%;and (x, o) N Z(G) C
Z{(x, o) = {1}, whence

G={x,0) XZ(G) =2, X Z(G) = G, X Z(G)
and we are done. Then let « have order 2, and thus x order 4; if u were
the square of a (2-)element y of Z(G), we might replace x by xy~' of
order 2, a contradiction. Let Z(G) = A X B, where A is a 2-group and B
a 2'-group; then u is an element of A that is not the square of any
element of A4, i.e., u € A\ Frat( 4). Thus there exists a subgroup M of A,
of index 2, such that u & M, hence 4 = M{u) and A = M X {u) because
Ku)l = o(u) = 2. Thus

Z(G)y=AXB={u)*x(MXxXB)
and
G={x,0,Z(G)) ={x,0,u,MXB)={x,0,M XB)

={(x,0) X (MXB) =G, X (MXB). ]

Remark. 1In [9, Théoréme !]. I somewhat rashly asserted that the
conclusion of Corollary 3.4 always holds; unfortunately there was a flaw in
my proof: on page 200, right-hand column, line 2 from below, “donc” is
correct only when u has order 2.

4. MULTIPLE COMMUTATIVITY DEGREE

As in [3], we define the “nth-commutativity degree” of a finite group G
(n € N) by

d,(G) =

] : R 2
G {(Xu»--,xm) eG" V(i) efl,...,n+ 1},

xix;=xx} |

Clearly dy(G) = 1, d(G) = d(G), and one has:

LEmMMA 4.1, Let {g,..., 84} be a system of representatives for the
conjugacy classes of G; then
1 A 1
VneN  d,.(G)= &

i=]

md”(cu(g,-))~
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Proof.

IGI""d,, . (G)

{(x,,...,x,,“) eG" V(i) € {1,...,n + 2}2,x,»xj =x]-x,-}.

- T

xeG

{(x,,...,x,lﬂ) € Co(x)" V(i ) e(1,...,n+ 1)%

XX, = XX,

= Z |C(;(x)|n+ Idu(C(;(x))

xeG
k(G)
n+ 1 v
= Z IG:C(i(gi)HC(;(gi), d.(C,(g))

i=1
Ag)l?/( )| o MI(C( )
= 5L G i > a, HES
i=1 oL 8 IK/{;(&')I at

k(G

_ n+1
- IGI = '%;/;('(gl)ln dn(c(i(gl))'

Whence the result. |
LEMMA 4.2, If G and H are isoclinic, then

Vn € N d'l(G) = dll(H)'

Proof. By the same reasoning as that in Lemma 2, one has

nt 1 G ntl
d"(G)z‘{(a,,...,a”“)E( ) l

’__N

2(G)

Z(G)
V(i) e (1,....n) ag( e, ) = 1} l

and one concludes as above. |
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THEOREM 4.3 [9, p. 202]. Ler G be a non-abelian group; then

3.27—1
ViEN  d(G) < —g5m (¥ xx)

For a given n > 1, equality in (* * ) holds if and only if G is isoclinic to @,.

Proof. We use induction on n: for n = 0 the inequality is obvious. Let
us assume d,(G) < (3-2" — 1)/2*"*! and then use Lemma 4.1, choosing
the g, in such a way that Z(G) = {g,,..., gz} We get

1 kG

)y

d. (G) = — ¥ ——
O =G = G T

dn(C(i(gi))

IZ(G)ld(G) 1 k{f) 1 4.(Cole)
= —d, + — PN 8
G Gl _ ey [E76(8)] ‘

1 3:2" -1 1 1
< > +
- |GZ(G)] 2u1+l [Gl 2;7

But 4(G) = |G|d(G) < 2G| by Corollary 3.2, and |G : Z(G)| > 4 because
G /Z(G) is not cyclic. Therefore

(K(G) —1Z(G))).

p G 1 3:-2" -1 1/{5 1
< Tl T T ew
O =i Z@Gy T T T \E T 6 (o)
5 1 1 3.2 +2 4 2 +3
_ " _ 3.0+ _ ]
8.2 |GZ(G)| 2-n+3( )
5 2n+3_4
= R P
2% T EENIG L Z(G)
5 2n+2_4
= 2n+3 + 4,22n+3
5:2" 42" -1
= T
3.zn+l _1
Y UE

and the inequality is proved at rank n + 1. This computation also makes
clear that, for a given n > 1, equality at rank n + 1 implies equality at
rank n. Therefore, if, for a given n > 1,

3-2" —1

22¢1+1

d,(G) =

’
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then d(G) = d(G) = 3. Therefore, by Corollary 3.2, G is isoclinic to an
extraspecial group of order 22 * 1, where 5(1 + 1/4™) = §, thatis, m = 1.
G is thercfore isoclinic either to the dihedral group of order 8 &, or to
the quaternion group &,. But these two groups are isoclinic, hence G is
isoclinic to &, in any case.

Conversely, if G is isoclinic to @, onc may assume, thanks to Lemma
4.2, that G = @,. Then |G : Z(G)| = 4, d,(G) = 1, and C,(x) is abelian
and of index 2 in G for all x € G\ Z(G); therefore, in the previous
computation, equality holds all along, which permits us to prove by
induction on n that

VneN d(@) = —. [

5. A THEOREM OF LEAVITT, SHERMAN, AND WALKER

In [6], using a result of Curzio, Longobardo, and Maj [1, Theorem 3],
Leavitt, Sherman, and Walker have established:

THEOREM 5.1.  The following conditions on a finite group G are equiva-
lent:

(1 1G'l < 2.
Q) VCeg/(G),|Cle(l,2}.
(3) VxeG,IC,(x)ellGlIGl/2).

(4) W(x,y, z2) € G, xyz € {yxz, yzx, xzy, zxy, zyx} (i.e., G is “3-re-
writeable™).

5) d(G)> L.

We intend to give a new proof of this result, using the tools from our
first two paragraphs.

Proof. (1) = (2) Let C = &/,(x); then each ¢ € C can be written
¢ =y 'xy, whence ¢ = x(x "'y~ 'xy) € xG" and C € xG'. Therefore

ICl < |1xG' = |G'| < 2.

(2) = (3) Clear because
Vxe Gl |7, (x) =G : Cy(x)l.

(3) = (4) Let (x, y, z) € G*; then C;(y) has at most two right
cosets in G. If x € C;(y) then xyz = yxz; if z € C;(y) then xyz = xzy. We
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may therefore assume that xCgi(y) = G\ Cgly) = 2C;(y), whence
z7'x € C,(y). If now xyz # yzx then yzCg;(x) = G\ C;(x), whence y €
yzC(x), ie., z € C(x). It follows that

7y =vz e =z

that is, xyz = zyx.
(4) = (5) Let us apply the hypothesis to a triple (x, y, x?); we get
V(x,y) €Gx G  xx? e {yo?, yxix, oy, xlxy, x%yx},

whence xy = yx or yx? =x’y, thus in any case x° € Z(G). Therefore
G /Z(G) is a group in which every element has square 1, i.e., an elemen-
tary abelian 2-group. By Proposition 2.5, there is a group H isoclinic to G
and such that Z(H) C H'.

H G
Z(H) ~ Z(G)
is then elementary abelian, whence H' ¢ Z(H) and
= Z(H).
For each h € H, ¢,: H/Z(H) — H’ defined by
YueH ¢, (uZ(H)) =[h,u]

(ie., ¢, = ay(hZ(H), -)) is a morphism of groups from H/Z(H) to H’,
therefore, for u € H, [h, u] = ¢,{uZ(H)) has order 2. H', being abelian
and generated by elements of order 2, is therefore an elementary abelian

2-group.
We now note that condition (4) can be written
V(x,y,z) € G’ [x,y]=1 oor
[y,z] =1 or
[x,yz]=1 or
[m,2] =1 or
Xz = zyx,
ie.,
Y(x,y,z) € G® [x,y] = or
[y.z]= or
[x,z][x,y] =1 or
[x,2][y.2] =1 or
[x,

yl[x.z2) [y, 2] = 1.
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It follows that, because G’ € Z(G) (and consequently H' ¢ Z(H)), condi-
tion (4) holds for H too. Now, the reasoning of [1, pp. 141-142), gives us

|H'| < 2.
Thence Z(H) = H' has order 1 or 2, i.e., H = {1} or H is an extraspecial

2-group. The computation made during the proof of Corollary 3.2 now
proves that

d(H) € {1} u {%(1 + i)

and thus d(G) = d(H) > 3.
(5) = (1) By Lemma 1.2,

- 3 3,
’ < —
%Gy -1 T 1~
thus 1G'| < 2. 1
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