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1 Introduction

Several convergence problems in the dual of a separable Banach space have
been treated with Fatou Lemma in Mathematical Economics [2, 9, 16],
martingales [8] and ergodic theorem [11, 19, 48]. The aforementioned re-
sults lead naturally to the law of large numbers in the dual space. At
this point, the law of large numbers for Pettis-integrable functions in lo-
cally convex spaces has been studied in [12], in particular, almost sure
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convergence for the law of large numbers in the weak star dual space for
some classes of Gelfand-integrable mappings is also available. Some re-
lated results for the law of large numbers involving the subdifferential of
Lipschitzean functions have been studied in [42, 43]. There are a plethore
of results for the convergence in the law of large numbers for vector val-
ued random variables and closed valued random sets in Banach spaces, see
e.g. [14, 15, 31, 32, 33, 34, 35, 36, 37, 41] and the references therein. Here
we provide new convergence (namely the weak star Kuratowski convergence)
in the law of large numbers for convex weak star compact valued Gelfand-
integrable mappings in a dual of a separable Banach space and, we also
present some new versions of law of large numbers and ergodic theorem in-
volving the subdifferential operator of a Lipschitzean function defined on a
separable Banach space. The paper is organized as follows. In section 2
we give definitions and preliminaries on measurability properties for con-
vex weak star compact valued mappings (alias multifunctions) in the dual
of a separable Banach space. In section 3 we summarize the properties
of conditional expectation for convex weak star compact valued Gelfand-
integrable mappings, in particular we present a Jensen type inequality for
convex weak star compact valued conditional expectation and a version of
dominated Lebesgue convergence theorem for convex weak star compact
valued Gelfand-integrable mappings. In section 4 we present several results
on the integration of convex weak star (resp. convex norm compact) valued
random sets with application to weak star Kuratowski convergence in the
law large numbers for convex norm compact valued Gelfand-integrable map-
pings in the same vein as [14, 34, 35, 41] dealing with Wijsman and Mosco
convergence in the law of large numbers for closed random integrable sets
in separable Banach spaces. In section 5 we provide two weak star Kura-
towski convergence results in the law of large numbers and ergodic theorem
involving the subdifferential operators of Lipschitzean functions defined on
a separable Banach space, and also an application to a closure type result
arisen in evolution inclusions.

2 Notations and preliminaries

Let (Ω,F , P ) be a complete probability space. Let E be a separable Banach
space, E∗ the topological dual of E, BE (resp. BE∗) the closed unit ball
of E (resp. E∗), D1 = (ek)k∈N a dense sequence in BE . We denote by
E∗s (resp. E∗b ) the vector space E∗ endowed with the topology σ(E∗, E) of
pointwise convergence, alias w∗ topology (resp. the topology s∗ associated
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with the dual norm ||.||E∗b ), and by E∗m∗ the vector space E∗ endowed with
the topology m∗ = σ(E∗, H), where H is the linear space of E generated by
D1, that is the Hausdorff locally convex topology defined by the sequence
of semi-norms

Pn(x∗) = max{|〈ek, x∗〉| : k ≤ n}, x∗ ∈ E∗, n ∈ N.

Recall that the topology m∗ is metrizable, for instance, by the metric

dE∗
m∗

(x∗, y∗) :=
∞∑
k=1

1

2k
|〈ek, x∗〉 − 〈ek, y∗〉|, x∗, y∗ ∈ E∗.

We assume from now on that dE∗
m∗

is held fixed. Further, we have m∗ ⊂
w∗ ⊂ s∗. On the other hand, the restrictions of m∗ and w∗ to any bounded
subset of E∗ coincide and the Borel tribes B(E∗s ) and B(E∗m∗) associated
with E∗s and E∗m∗ are equal, but the consideration of the Borel tribe B(E∗b )
associated with the topology of E∗b is irrelevant here. Noting that E∗ is
the countable union of closed balls, we deduce that the space E∗s is a Lusin
space, as well as the metrizable topological space E∗m∗ . Let K∗ = cwk(E∗s )
be the set of all nonempty convex weak star compact subsets in E∗. A
K∗-valued multifunction (alias mapping for short) X : Ω ⇒ E∗s is scalarly
F-measurable if, ∀x ∈ E, the support function δ∗(x,X(.)) is F-measurable,
hence its graph belongs to F ⊗B(E∗s ). Indeed, let (fk)k∈N be a sequence in
E which separates the points of E∗, then we have x∗ ∈ X(ω) iff 〈fk, x∗〉 ≤
δ∗(fk, X(ω)) for all k ∈ N. Consequently, for any Borel set G ∈ B(E∗s ), the
set

X−G = {ω ∈ Ω : X(ω) ∩G 6= ∅}

is F-measurable, that is, X−G ∈ F , this is a consequence of the Projection
Theorem (see e.g. [17, Theorem III.23] and of the equality

X−G = projΩ {Gr(X) ∩ (Ω×G)}.

In particular if u : Ω → E∗s is a scalarly F-measurable mapping, that is, if
for every x ∈ E, the scalar function ω 7→ 〈x, u(ω)〉 is F-measurable, then
the function f : (ω, x∗) 7→ ||x∗ − u(ω)||E∗b is F ⊗B(E∗s )-measurable, and for
every fixed ω ∈ Ω, f(ω, .) is lower semicontinuous on E∗s , i.e. f is a normal
integrand. Indeed, we have

||x∗ − u(ω)||E∗b = sup
k∈N
|〈ek, x∗ − u(ω)〉|.

As each function (ω, x∗) 7→ 〈ek, x∗ − u(ω)〉 is F ⊗ B(E∗s )-measurable and
continuous on E∗s for each ω ∈ Ω, it follows that f is a normal integrand.
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Consequently, the graph of u belongs to F⊗B(E∗s ). Let B be a sub-σ-algebra
of F . It is easy and classical to see that a mapping u : Ω→ E∗s is (B,B(E∗s ))
measurable iff it is scalarly B-measurable. A mapping u : Ω → E∗s is said
to be scalarly integrable (alias Gelfand integrable), if, for every x ∈ E,
the scalar function ω 7→ 〈x, u(ω)〉 is F-measurable and integrable. We de-
note by G1

E∗ [E](F) the space of all Gelfand integrable mappings and by
L1
E∗ [E](F) the subspace of all Gelfand integrable mappings u such that the

function |u| : ω 7→ ||u(ω)||E∗b is integrable. The measurability of |u| follows

easily from the above considerations. More generally, by G1
cwk(E∗s )(Ω,F , P )

(or G1
cwk(E∗s )(F) for short) we denote the space of all scalarly F- measur-

able and integrable cwk(E∗s )-valued mappings and by L1
cwk(E∗s )(Ω,F , P ) (or

L1
cwk(E∗s )(F) for short) we denote the subspace of all cwk(E∗s )-valued scalarly

integrable and integrably bounded mappings X, that is, such that the func-
tion |X| : ω → |X(ω)| is integrable, here |X(ω)| := supy∗∈X(ω) ||y∗||E∗b , by
the above consideration, it is easy to see that |X| is F-measurable.

For any X ∈ L1
cwk(E∗s )(F), we denote by S1

X(F) the set of all Gelfand-
integrable selections of X. The Aumann-Gelfand integral of X over a set
A ∈ F is defined by

E[1AX] =

∫
A
X dP := {

∫
A
f dP : f ∈ S1

X(F)}.

We will consider on K∗, the Hausdorff distance dH∗
m∗

associated with the
metric dE∗

m∗
in the Lusin metrizable space (E∗m∗ , dE∗m∗ ) and also the Haus-

dorff distance dH∗b associated with the norm dual ||.||E∗b on E∗b , namely

dH∗b (A,B) = sup
x∈BE

|δ∗(x,A)− δ∗(x,B)| ∀A,B ∈ K∗.

Let (Xn)n∈N be a sequence of w∗-closed convex sets, the sequential weak∗

upper limit w∗-lsXn of (Xn)n∈N is defined by

w∗-lsXn = {x∗ ∈ E∗ : x∗ = σ(E∗, E)- lim
j→∞

x∗j ; x
∗
j ∈ Xnj}.

Similarly the sequential weak∗ lower limit w∗-liXn of (Xn)n∈N is defined by

w∗-liXn = {x∗ ∈ E∗ : x∗ = σ(E∗, E)- lim
n→∞

x∗n; x∗n ∈ Xn}.

The sequence (Xn)n∈N weak star Kuratowski (w∗K for short) converges to
a w∗-closed convex set X∞ if the following holds

w∗-lsXn ⊂ X∞ ⊂ w∗-liXn a.s.
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Briefly
w∗K- lim

n→∞
Xn = X∞ a.s.

When dealing with w∗-closed valued mappings, it is convenient to adopt
the following terminology. A closed valued mapping Γ : Ω ⇒ E∗s is a F-
measurable random set , if its graph belongs to F ⊗B(E∗s ). Such a mapping
is integrable if the set S1

Γ of L1
E∗ [E](F) selections of Γ is nonempty.

In the remainder of the paper, the terminology weak or weakly is re-
lated to the weak topology of Banach space. We denote by cwk(E∗b ) the
collection of all nonempty convex weakly compact subsets in E∗b , ck(E∗b )
the collection of all nonempty convex norm compact subsets in E∗b and
by L1

cwk(E∗b )(F) (resp. L1
ck(E∗b )(F)) we denote the collection of all cwk(E∗b )-

valued (resp. ck(E∗b )-valued) scalarly integrable and integrably bounded map-
pings.

3 Measurability and Conditional expectation in
the dual space

We summarize some needed results on measurability and conditional expec-
tation for convex weak star compact valued Gelfand-integrable mappings in
the dual space. A K∗-valued mapping X : Ω → E∗ is a K∗-valued random
set if X(ω) ∈ K∗ for all ω ∈ Ω and if X is scalarly F-measurable. We will
show that K∗-valued random sets enjoy good measurability properties.

Proposition 3.1 Let X : Ω → cwk(E∗s ) be a convex weak star compact
valued mapping. The following are equivalent
(a) X−V ∈ F for all m∗-open subset V of E∗.
(b) Graph(X) ∈ F ⊗ B(E∗s ) = F ⊗ B(E∗m∗).
(c) X admits a countable dense set of (F ,B(E∗s ))-measurable selections.
(d) X is scalarly F-measurable.

Proof. (a)⇒ (b). Recall that any K ∈ K∗ is m∗-compact and m∗ ⊂ w∗ and
the Borel tribes B(E∗s ) and B(E∗m∗) are equal. Recall also that E∗m∗ is a Lusin
metrizable space. By (a) X is a m∗-compact valued measurable mapping
from Ω into the Lusin metrizable space E∗m∗ . Hence Graph(X) ∈ F⊗B(E∗m∗)
because

Graph(X) = {(ω, x∗) ∈ Ω× E∗m∗ : dE∗
m∗

(x∗, X(ω)) = 0}
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and the mapping (ω, x∗) 7→ dE∗
m∗

(x∗, X(ω)) is F ⊗ B(E∗m∗)-measurable.
(b) ⇒ (a) by applying the measurable Projection Theorem (see e.g. [17,
Theorem III.23]) and the equality

X−V = projΩ {Graph(X) ∩ (Ω× V )}.

Hence (a) and (b) are equivalent.
(b) ⇒ (c). Since E∗s is a Lusin space, by [17, Theorem III-22], X ad-
mits a countable dense set of (F ,B(E∗s ))-measurable selections (fn), that is,
X(ω) = w∗cl{fn(ω)} for all ω ∈ Ω.
(c) ⇒ (d). Indeed one has δ∗(x,X(ω)) = supn〈x, fn(ω)〉 for all x ∈ E and
for all ω ∈ Ω, thus proving the required implication.
(d)⇒ (b). We have already seen in Section 2 that (c) implies that Graph(X) ∈
F ⊗ B(E∗s ). As B(E∗s ) = B(E∗m∗), the proof is finished.

Corollary 3.2 Let X : Ω→ cwk(E∗s ) be a convex weak star compact valued
mapping. The following are equivalent:
(a) X−V ∈ F for all w∗-open subset V of E∗.
(b) Graph(X) ∈ F ⊗ B(E∗s ).
(c) X admits a countable dense set of (F ,B(E∗s ))-measurable selections.
(d) X is scalarly F-measurable.

Proof. (a) ⇒ (d) is easy. The implications (d) ⇒ (b), (b) ⇒ (c), (c) ⇒ (d),
(b) ⇒ (a) are already known. For further details on these facts, consult
Proposition 5.2 and Corollary 5.3 in [9].

Remarks 3.3 Proposition 3.1 shows that a K∗-valued random set can be
viewed as a K∗-valued measurable mapping from Ω into the Lusin metrizable
space E∗m∗ . We will see in the next section the usefulness of the space E∗m∗
in the study of independence of K∗-valued random sets.

Let B be a sub-σ-algebra of F and let X be a K∗-valued integrably
bounded random set, let us define

S1
X(B) := {f ∈ L1

E∗ [E](Ω,B, P ) : f(ω) ∈ X(ω) a.s.}

and the multivalued Aumann-Gelfand integral (shortly esperance) E[X,B]
of X

E[X,B] := {
∫
fdP : f ∈ S1

X(B)}.

As S1
X(B) is σ(L1

E∗ [E](B), L∞E (B)) compact [13, Corollary 6.5.10], the expec-
tation E[X,B] is convex σ(E∗, E) compact. Before going further we need
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to recall and summarize the existence and uniqueness of the conditional
expectation in L1

cwk(E∗s )(F). See [47, Theorem 3], [16, Theorem 7.3]. For
more information on the conditional expectation of multifunctions, we refer
to [1, 8, 36, 47]. In particular, existence results for conditional expecta-
tion in Gelfand and Pettis integration can be derived from the multivalued
Dunford-Pettis representation theorem, see [8]. A fairly general version of
conditional expectation for closed convex integrable random sets in the dual
of a separable Fréchet space is obtained by Valadier [47, Theorem 3]. Here
we need only a special version of this result in the dual space E∗s .

Theorem 3.4 Let E be a separable Banach space and let Γ be a closed
convex valued integrable random set in E∗s . Let B be a sub-σ-algebra of F .
Then there exist a closed convex B-measurable mapping Σ in E∗s such that:
1) Σ is the smallest closed convex B-measurable mapping Θ such that ∀u ∈
S1

Γ, EBu(ω) ∈ Θ(ω) a.s.
2) Σ is the unique closed convex B-measurable mapping Θ such that ∀v ∈
L∞R (B), ∫

Ω
δ∗(v,Γ)dP =

∫
Ω
δ∗(v,Θ)dP.

3) Σ is the unique closed convex B-measurable mapping such that S1
Σ =

cl EB(S1
Γ)) where cl denotes the closure with respect to σ(L1

E∗(B), L∞E (B)).

Theorem 3.4 allows to treat the conditional expectation of convex weakly
compact valued integrably bounded mappings in E. Indeed if F := E∗b is
separable and if Γ is a convex weakly compact valued measurable mapping
in E with Γ(ω) ⊂ α(ω)BE where α ∈ L1

R, then applying Theorem 3.4 to F ∗

gives Σ(ω) = EBΓ(ω) ⊂ E∗∗ with Σ(ω) ⊂ EBα(ω)BE∗∗ where BE∗∗ is the
closed unit ball in E∗∗. As S1

Γ is σ(L1
E , L

∞
E∗) compact, S1

Σ = EB(S1
Γ) ⊂ L1

E .
Whence Σ(ω) ⊂ E a.s. See [47, Remark 4, page 10] for details.

The following existence theorem of conditional expectation for convex
weak star compact valued Gelfand-integrable mappings follows from a ver-
sion of multivalued Dunford-Pettis theorem in the dual space [8, Theorem
7.3]. In particular, it provides the weak star compactness of conditional
expectation for integrably bounded weak star compact valued scalarly mea-
surable mappings with some specific properties.

Theorem 3.5 Given Γ ∈ L1
cwk(E∗s )(F) and a sub-σ-algebra B of F , there

exists a unique (for equality a.s.) mapping Σ := EBΓ ∈ L1
cwk(E∗s )(B), that is

the conditional expectation of Γ with respect to B, which enjoys the following
properties:
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a)
∫

Ω δ
∗(v,Σ)dP =

∫
Ω δ
∗(v,Γ)dP for all v ∈ L∞E (B).

b) Σ ⊂ EB|Γ|BE∗ a.s.
c) S1

Σ(B) is σ(L1
E∗ [E](B), L∞E (B)) compact (here S1

Σ(B) denotes the set of
all L1

E∗ [E](B) selections of Σ) and satisfies

δ∗(v,EBS1
Γ(F)) = δ∗(v,S1

Σ(B))

for all v ∈ L∞E (B).
d) EB is increasing: Γ1 ⊂ Γ2 a.s. implies EBΓ1 ⊂ EBΓ2 a.s.
e) For any B ∈ B, and for any X,Y ∈ L1

cwk(E∗s )(F) we have∫
B
dH∗

m∗
(EBX,EBY )dP ≤

∫
B
dH∗

m∗
(X,Y )dP

Proof. Properties a) − b) are classical, see e.g. [8, 17, 16, 47]. c) follows
from a weak compactnes result [13, Corollary 6.5.10]. e) can be proved as
in [36], nevertheless this needs a bit more details. For technical consider-
ation, we may assume B is complete. Since EBX and EBY are scalarly
B-measurable, by Proposition 3.1 they are viewed as compact valued mea-
surable mapping in the Lusin metric space (E∗m∗ , dE∗m∗ ). Consequently the

function dE∗
m∗

(x∗, EBX) and dE∗
m∗

(x∗, EBY ) are separately B-measurable
on Ω and separately continuous on (E∗m∗ , dE∗m∗ ). Whence the function

sup
x∗∈EBX

dE∗
m∗

(x∗, EBY )

is B-measurable and so is the function

sup
y∗∈EBY

dE∗
m∗

(y∗, EBX)}.

It follows that dH∗
m∗

(EBX,EBY ) is B-measurable because

dH∗
m∗

(EBX,EBY ) = max{ sup
x∗∈EBX

dE∗
m∗

(x∗, EBY ), sup
y∗∈EBY

dE∗
m∗

(y∗, EBX)}.

Let us set

A = {ω ∈ Ω : sup
x∗∈EBX(ω)

dE∗
m∗

(x∗, EBY (ω)) ≥ sup
y∗∈EBY (ω)

dE∗
m∗

(y∗, EBX(ω))}.
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Then by the above consideration A is B-measurable. By integration on B
we have∫

B
dH∗

m∗
(EBX,EBY )dP =

∫
B∩A

sup
x∗∈EBX(ω)

dE∗
m∗

(x∗, EBY (ω))dP (ω)

+

∫
B\A

sup
y∗∈EBY (ω)

dE∗
m∗

(y∗, EBX(ω))dP (ω).

By a standard application of a measurable selection theorem (see e.g. [17]),
we have∫
B∩A

sup
x∗∈EBX(ω)

dE∗
m∗

(x∗, EBY (ω))dP (ω) = sup
g∈S1

EBX

∫
B∩A

dE∗
m∗

(g,EBY )dP

and similarly∫
B\A

sup
y∗∈EBY (ω)

dE∗
m∗

(y∗, EBX(ω))dP (ω) = sup
h∈S1

EBY

∫
B\A

dE∗
m∗

(h,EBX)dP

and also

sup
g∈S1

EBX

∫
B∩A

dE∗
m∗

(g,EBY )dP = sup
g∈S1

EBX

inf
h∈S1

EBY

∫
B∩A

dE∗
m∗

(g, h)dP

= sup
u∈S1

X

inf
v∈S1

Y

∫
B∩A

dE∗
m∗

(EBu,EBv)dP

and

sup
h∈S1

EBY

∫
B\A

dE∗
m∗

(h,EBX)dP = sup
h∈S1

EBY

inf
g∈S1

EBX

∫
B\A

dE∗
m∗

(h, g)dP

= sup
v∈S1

Y

inf
u∈S1

X

∫
B\A

dE∗m(EBu,EBv)dP.

Taking into account the definition of dE∗
m∗

and a classical property of real
valued conditional expectation we have∫

B∩A
dE∗m(EBu,EBv)dP ≤

∫
B∩A

dE∗
m∗

(u, v)dP

and ∫
B\A

dE∗m(EBu,EBv)dP ≤
∫
B\A

dE∗
m∗

(u, v)dP.
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Whence we deduce that

sup
u∈S1

X

inf
v∈S1

Y

∫
B∩A

dE∗
m∗

(EBu,EBv)dP ≤ sup
u∈S1

X

inf
v∈S1

Y

∫
B∩A

dE∗
m∗

(u, v)dP

and

sup
v∈S1

Y

inf
u∈S1

X

∫
B\A

dE∗
m∗

(EBu,EBv)dP ≤ sup
v∈S1

Y

inf
u∈S1

X

∫
B\A

dE∗
m∗

(u, v)dP.

But we have

sup
u∈S1

X

inf
v∈S1

Y

∫
B∩A

dE∗
m∗

(u, v)dP =

∫
B∩A

sup
x∗∈X(ω)

dE∗
m∗

(x∗, Y (ω))dP (ω)

≤
∫
B∩A

dH∗
m∗

(X,Y )dP

and

sup
v∈S1

Y

inf
u∈S1

X

∫
B\A

dE∗
m∗

(u, v)dP =

∫
B\A

sup
y∗∈Y (ω)

dE∗
m∗

(y∗, X(ω))dP (ω)

≤
∫
B\A

dH∗
m∗

(X,Y )dP.

Finally, by combining these inequalities,∫
B
dH∗

m∗
(EBX,EBY )dP ≤

∫
B
dH∗

m∗
(X,Y )dP.

Here is a version of Lebesgue dominated convergence theorem for condi-
tional expectations. Compare with Theorem 2.7 in Hiai [35] for the primal
Banach space.

Theorem 3.6 Let B be a sub-σ-algebra of F and let (Xn)n∈N∪{∞} be a
sequence in L1

cwk(E∗s )(F) with g := sup∈N∪{∞} |Xn| ∈ L1
R(F). Assume that

lim
n→∞

dH∗b (Xn(ω), X∞(ω)) = 0 ∀ω ∈ Ω

then
lim
n→∞

dH∗
m∗

(EBXn(ω), EBX∞(ω)) = 0 a.s. ω ∈ Ω
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Proof. Applying Theorem 3.5-(e) yields

dH∗
m∗

(EBXn(ω), EBX∞(ω)) ≤ EBdHm∗ (Xn(ω), X∞(ω)) a.s. ω ∈ Ω.

As dH∗
m∗

(A,B) ≤ dH∗b (A,B) for A,B ∈ cwk(E∗) we have that

dH∗
m∗

(Xn(ω), X∞(ω)) ≤ dH∗b (Xn(ω), X∞(ω)) ≤ 2g(ω)

for all ω ∈ Ω, it follows that

dH∗
m∗

(EBXn(ω), EBX∞(ω)) ≤ EBdH∗b (Xn(ω), X∞(ω))→ 0 a.s. ω ∈ Ω

when n→∞.

4 Law of Large Numbers in a dual space

Thanks to good measurability properties for convex weak∗compact valued
integrably bounded random sets and their conditional expectation developed
in Section 3 we provide some convergence results in the law of large numbers
for K∗-valued integrably bounded random sets. Now we need to introduce
some probabilistic notions and terminologies in the dual space E∗ although
these are somewhat similar to those given in the primal space E. Let F(E∗m∗)
be the collection of nonempty m∗-closed subset of E∗m∗ . On F(E∗m∗) we
consider the Effros tribe E generated by the sets of the form

{K ∈ F(E∗m∗) : K ∩O 6= ∅}

whereO is them∗-open sets in E∗m∗ and we consider onK∗ the tribe B(K∗) :=
E|K∗. Then a K∗-valued random set can be viewed as a measurable mapping
from the measurable space (Ω,F) into the measurable space (K∗,B(K∗)).
We denote by

FX := X−1(B(K∗)) = {X−1(U) : U ∈ B(K∗)}

the smallest σ-algebra of F for which X is measurable. The distribution µX
of X is the probability measure µX defined on B(K∗) by

µX(U) = P (X−1(U)), U ∈ B(K∗).

A sequence (Xn) of K∗-valued random set is independent if the FXn are in-
dependent, identically distributed if all µXn are identical and i.i.d if they are
independent and identically distributed. On account of the above consider-
ations we summarize some useful properties of K∗-valued random sets using
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some arguments in the primal space given in [35]. At this point, compare
with a similar result in the primal space [34, Proposition 2.6 and Remark
2.7]. The following results constitute a key tool in the study of law of large
numbers in the dual space.

Proposition 4.1 (1) Let X be an integrably bounded K∗-valued random set,
then E[X,FX ] is σ(E∗, E) compact.
(2) Let X and Y be two identically distributed integrably bounded K∗-valued
random sets. Then, for each f ∈ S1

X(FX), there exists g ∈ S1
Y (FY ) such

that f and g are identically distributed.
(3) If X is an integrably bounded ck(E∗b )-valued random set, X ∈ L1

ck(E∗b )(F)

for short, then E[X] = E[X,FX ].
(4) Let X and Y be two identically distributed integrably bounded ck(E∗b )-
valued random sets, then E[X,FX ] = E[Y,FY ].

Proof. (1) Let FX be the the smallest σ-algebra of F for which X is measur-
able. Then the convex m∗-compact convex valued mapping X : Ω → E∗m∗
is FX -measurable, that is, for each m∗-open set in O in E∗m∗ , X

−O ∈
FX . Since E∗m∗ is Lusin metrizable space, by classical measurable selec-
tion [17, Theorem III.8], X admits a (FX ,B(E∗m∗))-measurable (equiva-
lently (FX ,B(E∗s ))-measurable, (equivalently scalarly FX -measurable) selec-
tion f : Ω→ E∗. Further the mapping |X| is FX -measurable and integrable.
Whence such a selection f belongs to L1

E∗ [E](FX). Briefly the set S1
X(FX)

of L1
E∗ [E](FX)-integrable selections of X is nonempty, and S1

X(FX) is con-
vex σ(L1

E∗ [E](FX), L∞E (FX)) compact [13, Corollary 6.5.10], consequently
the expectation

E[X,FX ] := {E(f) : f ∈ S1
X(FX)}

is convex σ(E∗, E) compact.
(2) Since E∗m∗ is a Lusin space, f : Ω→ E∗m∗ is (FX ,B(E∗m∗))-measurable, by
a classical factorization argument in Lusin spaces, we find a (B(K∗),B(E∗m∗))-
measurable function Φ : K∗ → E∗m∗ satisfying f(ω) = Φ(X(ω)) for every
ω ∈ Ω. Define g(ω) = Φ(Y (ω)), ω ∈ Ω. Since X and Y are identically
distributed, f and g are also identically distributed. We have∫

Ω
||g(ω)||E∗b dP (ω) =

∫
K∗
||Φ(K)||E∗b dµY (K)

=

∫
K∗
||Φ(K)||E∗b dµX(K) =

∫
Ω
||f(ω)||E∗b dP (ω) <∞.

12



Because for each x∗ ∈ E∗ the functionK → dE∗
m∗

(x∗,K) is B(K∗)-measurable,
and for each K ∈ K∗ the function x∗ → dE∗

m∗
(x∗,K) is continuous on E∗m∗ ,

the function (x∗,K)→ dE∗
m∗

(x∗,K) from E∗m∗×K∗ into R is B(E∗m∗)⊗B(K∗)-
measurable, hence dE∗m(f(.), X(.)) and dE∗

m∗
(g(.), Y (.)) are identically dis-

tributed. Hence dE∗
m∗

(f(ω), X(ω)) = 0 a.s. implies that

dE∗
m∗

(g(ω), Y (ω)) = 0 a.s. ω ∈ Ω.

As Y (ω) is m∗-compact, g ∈ S1
Y (FY ).

(3) Now we will prove (3) by applying some arguments in the proof of
Lemma 3.1 in Hiai [35] via the norm compactness condition on X and the
conditional expectation EFXf = E(f |FX) of f ∈ L1

E∗ [E](F). This needs
a bit more details. Observe that X admits a countable norm dense set
{fi}i∈N of L1

E∗ [E](FX)-integrable selections. Given f ∈ S1
X and ε > 0,

imitating the construction in [36, (5.5)], there is a finite measurable partition
(Ai : i = 1, ..n) of Ω such that

|f −
n∑
i=1

1Aifi|1 :=

∫
Ω
||f(ω)−

n∑
i=1

1Aifi(ω)||E∗b dP (ω) ≤ ε

therefore

|EFX (f −
n∑
i=1

1Aifi)|1 ≤ |f −
n∑
i=1

1Aifi|1 ≤ ε.

By convexity we have

EFX (
n∑
i=1

1Aifi) =
n∑
i=1

EFX (1Aifi) =
n∑
i=1

EFX (1Ai)fi ∈ S1
X(FX).

This shows that given f ∈ S1
X , and ε > 0 there exist gε ∈ S1

X(FX) such that

|EFXf − gε|1 ≤ ε.

Therefore

|
∫
A
〈x,EFXf − gε〉dP | ≤

∫
A
|〈x,EFXf − gε〉|dP

≤
∫

Ω
||EFXf − gε||E∗b dP ≤ ε

13



for all A ∈ FX and for all x ∈ BE . In other words, for every n ∈ N, there
exists gn ∈ S1

X(FX) such that

|
∫
A
〈x,EFXf − gn〉dP | ≤

∫
A
|〈x,EFXf − gn〉|dP

≤
∫

Ω
||EFXf − gn||E∗b dP ≤

1

n

for all A ∈ FX and for all x ∈ BE . Since gn ∈ S1
X(FX) and S1

X(FX)
is sequentially σ(L1

E∗ [E](FX), L∞E (FX)) compact [13, Corollary 6.5.10], we
may assume that (gn)n∈N converges to h ∈ S1

X(FX) with respect to this
topology. Passing to the limit when n→∞ in the inequality |

∫
A〈x,E

FXf−
gn〉dP | ≤ 1

n shows that

〈x,EFXf〉 = 〈x, h〉 a.s.

for each x ∈ E, i.e. EFXf = h scalarly a.s. By separability, we may conclude
that EFXf = h a.s. in E∗s . This proves that

{EFXf : f ∈ S1
X} ⊂ S1

X(FX).

Now (2) follows easily. Indeed we have

E[X] = {E(f) : f ∈ S1
X} = {E(E(f |FX)) : f ∈ S1

X}
⊂ {E(f) : f ∈ S1

X(FX)} = E[X,FX ].

(4) is immediate from (3).

When X is cwk(E∗b )-valued, i.e. convex weakly compact valued, both the
set of selections S1

X and the expectation E[X] enjoy good weak compactness
properties, namely

Proposition 4.2 Let X be a cwk(E∗b )-valued scalarly measurable and inte-
grably bounded mapping, X ∈ L1

cwk(E∗b )(F) for short. Then

(1) S1
X is convex σ(L1

E∗ [E](F), (L1
E∗ [E](F))∗) compact, where (L1

E∗ [E](F))∗

denotes the topological dual of the Banach space L1
E∗ [E](F).

(2) E[X] is weakly compact.

Proof. (1) is Corollary 4.2 in [3] and (2) follows easily.
Here is an easy consequence. We need the following definition. A uni-

formly integrable sequence (un)n∈N in L1
E∗ [E](F) is weakly tight if for every

14



ε > 0 there is a scalarly measurable and integrably bounded weakly compact
convex valued mapping Φε : Ω⇒ E∗ with 0 ∈ Φε(ω) for all ω ∈ Ω such that

sup
n∈N

P ({ω ∈ Ω : un(ω) /∈ Φε(ω)}) ≤ ε.

By repeating the arguments in [5] we see that such a sequence is relatively
weakly compact in L1

E∗ [E](F). Indeed it is easily seen that un can be witten
as un = 1Anun+1Ω\An

un with An ∈ F and 1Anun ∈ S1
Φε

and ||1Ω\An
un||1 ≤

ε. By Proposition 4.2-(1) (or [4, Proposition 4.2]) S1
Φε

is weakly compact in
L1
E∗ [E](F). In view of Grothendieck lemma [30], we conclude that (un)n∈N

is relatively weakly compact.
The following is useful in the law of large numbers for norm compact

valued integrably bounded random sets. That is a dual version of Lemma
3.1-(1) in [35].

Proposition 4.3 If X is an integrably bounded norm compact-valued ran-
dom set, then

coE[X] ⊂ E[coX] = E[coX,FX ] ⊂ coE[X,FX ]

so that coE[X] = coE[X,FX ].

Proof. Step 1. Since a norm compact set is a weak star compact set, and is
also m∗-compact in E∗m∗ . Hence X is a fortiori a m∗-compact valued random
set. Let FX be the the smallest σ-algebra of F for which X is measurable.
Then the m∗-compact valued mapping X : Ω ⇒ E∗m is FX -measurable,
that is, for each m∗-open set in O in E∗m, X−O ∈ FX . Since E∗m∗ is Lusin
metrizable space, by a classical measurable selection theorem [17], X ad-
mits a countable dense sequence (fi)i∈N of (FX ,B(E∗m∗)-measurable (equiv-
alently (FX ,B(E∗s ))-measurable, (equivalently scalarly FX -measurable) se-
lections. Further the mapping |X| is FX -measurable and integrable so that
(fi)i∈N ⊂ S1

X(FX). Since X is norm compact valued X admits a norm
dense sequence of selections (fi)i∈N ⊂ S1

X(FX). It is not difficult to check
that the associated convex norm compact valued mapping coX enjoys the
same properties and the set S1

coX(FX) of L1
E∗ [E](FX)-integrable selections

of coX is nonempty and weakly compact in L1
E∗ [E](FX) thanks to Proposi-

tion 4.2-(1), consequently the expectation E[coX] is convex weakly compact
by Proposition 4.2-(2). By an appropriate modification of the proof of The-
orem 1.5 in [36] we assert that

(4.1) S1
coX(FX) = co S1

X(FX)
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in the Banach space L1
E∗ [E](FX). We give the details of this fact for conve-

nience. Since S1
X(FX) ⊂ S1

coX(FX), we have

co S1
X(FX) ⊂ S1

coX(FX)

because S1
coX(FX) is convex and weakly compact in L1

E∗ [E](FX). Let us
define

U = {g : g =
m∑
i=1

= αifi, αi ≥ 0, rational
m∑
i=1

αi = 1,m ≥ 1}.

Then U is a countable dense subset of S1
coX(FX) with

coX(ω) = norm closure {g(ω) : g ∈ U}

for all ω ∈ Ω. Using this fact and arguing as in [36, Lemma 3.1] shows
that, given f ∈ S1

coX(FX) and ε > 0, there is a finite measurable partition
{A1, .., An} and g1, ..., gn ⊂ U such that

|f −
n∑
k=1

1Ak
gk|1 < ε.

As in [36, Theorem 1.5] we have1

n∑
k=1

1Ak
gk ∈ co S1

X(FX).

We claim that f ∈ co S1
X(FX). Note that co S1

X(FX) is weakly compact in
L1
E∗ [E](FX). The preceding estimate shows that, for every n ∈ N there is

hn ∈ co S1
X(FX) such that

|
∫
A
〈x, f − hn〉dP | ≤

∫
A
|〈x, f − hn〉|dP

≤
∫

Ω
||f − hn||E∗b dP ≤

1

n

for all A ∈ FX and for all x ∈ BE . Hence E(f) = limnE(hn) in E∗b
with E(hn) ∈ coE[X,FX ]. Further, since hn ∈ coS1

X(FX) and coS1
X(FX)

is weakly compact in L1
E∗ [E](FX) we may assume that (hn)n∈N converges

1namely
∑n

k=1 1Akgk is a convex combination with positive rational coefficients of
functions in S1

X(FX)
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weakly in L1
E∗ [E](FX) to h ∈ coS1

X(FX). Passing to the limit when n→∞
in the inequality |

∫
A〈x, f − hn〉dP | ≤

1
n shows that

〈x, f〉 = 〈x, h〉 a.s.

for each x ∈ E, i.e. f = h scalarly a.s. By separability, we may conclude
that f = h a.s. in E∗s .
Step 2 and final conclusion. We have coE[X] ⊂ E[coX] because E[coX] is
convex weakly compact by Proposition 4.2-(2). By Proposition 4.1-(3) we
have

coE[X] ⊂ E[coX] = E[coX,FX ] = {E(f) : f ∈ S1
coX(FX)}.

By (4.1) we have

{E(f) : f ∈ S1
coX(FX)} = {E(f) : f ∈ co S1

X(FX)]}.

It follows that

coE[X] ⊂ E[coX] = E[coX,FX ] ⊂ coE[X,FX ].

We begin with an ergodic version for a stationary sequence of integrably
bounded ck(E∗b )-valued (i.e. convex norm compact valued) random sets and
its application to weak star Kuratowski convergence for law of large numbers
in the dual space. We will provide complete details of proof since our tools
can be applied to other variants.

Theorem 4.4 Let (Xn) be a stricly stationary sequence of integrably bounded
ck(E∗b )-valued random sets such that g := supn∈N |Xn| ≤ α is integrable, Let
I denote the tribe of invariant events of (Xn). Then we have

dH∗
m∗

(
1

n

n∑
i=1

Xi, E
I [X1]

)
= 0 a.s.

Furthermore, as the topologies m∗ and w∗ coincide on g(ω)BE∗, we have

w∗K- lim
n→∞

1

n

n∑
i=1

Xi(ω) = EI [X1] a.s.

The proof of Theorem 4.4 follows similar lines as in [23, 24]. We need a
preliminary Vitali-type lemma:
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Lemma 4.5 Let (Qn) be a sequence of Borel probability measures on the
metric space (ck(E∗m∗), dH∗m∗ ) which narrowly converges to a Borel proba-
bility measure Q on (ck(E∗m∗), dH∗m∗ ) (that is, for any continuous bounded

function ϕ : ck(E∗m∗ → R, the sequence (Qn(ϕ)) = (
∫
ϕdQn) converges to

Q(ϕ)). Assume that |.| is uniformly integrable with respect to (Qn) and Q.
Then the Aumann-Gelfand expectations of Qn converge for the Hausdorff
distance dH∗

m∗
to the Aumann-Gelfand expectation of Q:

lim
n→∞

dH∗
m∗

(∫
x∗dQn(x∗),

∫
x∗dQ(x∗)

)
= 0.

Proof. By [17, Theorem II-8], the metric space (ck(E∗m∗), dH∗m∗ ) is separa-
ble. We can thus apply Jakubowski’s version of Skorokhod’s representation
theorem [38, Theorem 2]: for any subsequence of (Qn), we can find a further
subsequence (which we denote by (Qn) for simplicity of notations) and a se-
quence (Yn) of ck(E∗m∗)-valued random sets defined on the Lebesgue interval
([0, 1],B[0,1], l) such that Yn converges to Y a.s. for the Hausdorff distance
dH∗

m∗
. Note that, by the integrability of |.| with respect to Qn and Q, the

random sets Yn and Y are integrably bounded. By Proposition 4.1-(4), we
have E[Y ] = E[X] and E[Yn] = E[Xn] for every n.

Let us also observe that, if X is an integrably bounded ck(E∗m∗)-valued
random set with distribution Q on the Borel tribe of B(ck(E∗m∗)), then

(4.2) E[X] =

∫
ck(E∗

m∗ )
x dQ(x)

where
∫
ck(E∗

m∗ ) x dQ(x) denotes the set of integrals of the form∫
ck(E∗

m∗ )
ϕ(x) dQ(x)

where ϕ : ck(E∗m∗)→ E∗m∗ satisfies Q-a.s. ϕ(x) ∈ x. Indeed, by Proposition
4.1-(3), since X is integrably bounded and ck(E∗m∗)-valued, we have that
E[X] = E[X,FX ], and if u ∈ S1

X(FX), by a well known theorem of Doob
(see [26, page 603] or [25, page 18]) there exists a Borel measurable mapping
ϕ : ck(E∗m∗)→ E∗m∗ such that u = ϕ ◦X, which proves that the right hand
side of (4.2) is a subset of the left hand side. The converse inclusion is
trivial.

Now, applying Theorem 3.5-(e) with X and Y defined on [0, 1], B =
{∅, [0, 1]}, and B = [0, 1], we get

dH∗
m∗

(∫
X dl,

∫
Y dl

)
≤
∫
dH∗

m∗
(X,Y ) dl.
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We thus have

dH∗
m∗

(∫
x∗dQn(x∗),

∫
x∗dQ(x∗)

)
= dH∗

m∗

(∫
Yn dl,

∫
Y dl

)
≤
∫
dH∗

m∗
(Yn, Y ) dl −→ 0

by Vitali theorem and the uniform integrability assumption.
Let us denote, for every n,

ρn = dH∗
m∗

(∫
x∗dQn(x∗),

∫
x∗dQ(x∗)

)
.

We have proved that, for every subsequence of (ρn) there is a further sub-
sequence which converges to 0. This proves that (ρn) converges to 0.

Proof of Theorem 4.4. By Proposition 4.1-(3), since each Xn is integrably
bounded and ck(E∗m∗)-valued, we have that E[Xn] = E[Xn,FXn ] and EI [X1] =
{EI [u]; u ∈ S1

X1
}.

By [17, Corollary II-9], the metric space (ck(E∗m∗), dH∗m∗ ) is Lusin, be-
cause m∗ is Lusin. Let ω 7→ Qω denote a regular version of the conditional
law of X1 with respect to I. For each integer n ≥ 1 and each ω ∈ Ω,
let Qn,ω be the empirical distribution 1

n

∑n
i=1 δXi(ω), where δx denotes the

Dirac mass at x. By the assumption on g, the sequence (Qn,ω) is tight for
almost every ω. Furthermore, by the ergodic theorem, for any continuous
f : (ck(E∗m∗), dH∗m∗ )→ R such that f(X1) is integrable,

lim
n→∞

Qn,ω(f)−Qω(f) = lim
n→∞

1

n

n∑
i=1

f(Xi(ω))− EI [f(X1)](ω)) = 0 a.e.

This shows that a.s. (Qn,ω) has only one possible limit, which is Qω. Thus
there exists a measurable subset Ω′ of Ω such that P (Ω′) = 1 and the
sequence (Qn,ω) narrowly converges to Qω for all ω ∈ Ω′. We deduce, by
Lemma 4.5, for every ω ∈ Ω′,

dH∗
m∗

(
1

n

n∑
i=1

Xi, E
I [X1]

)
= dH∗

m∗

(∫
x∗dQn,ω(x∗),

∫
x∗dQω(x∗)

)
−→ 0.
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Remark 4.6 In the case when (Xn) is i.i.d., the variable g = supn |Xn| is
necessarily constant (with finite value). Indeed, the variable g̃ = lim supn→∞
is a tail r.v., thus by the zero-one law it is a.s. constant, say g̃(ω) = R a.s.
But, as (Xn) is identically distributed, if P (|X1| > r) > 0 then |Xn| > r
infinitely often with probability 1 by the Borel-Cantelli lemma, a contradic-
tion.

The same arguments as in the proof of Theorem 4.4 but replacing the
ergodic theorem by Etemadi’s strong law of large numbers [28] yield a strong
law of large numbers for pairwise identically distributed ck(E∗b )-valued ran-
dom sets:

Theorem 4.7 Let (Xn) be a pairwise independent identically distributed se-
quence of integrably bounded ck(E∗b )-valued (i.e. convex norm compact val-
ued) random sets such that g := supn∈N |Xn| ≤ α is integrable. Then we
have

dH∗
m∗

(
1

n

n∑
i=1

Xi, E[X1]

)
= 0 a.s.

Furthermore, as the topologies m∗ and w∗ coincide on g(ω)BE∗, we have

w∗K- lim
n→∞

1

n

n∑
i=1

Xi(ω) = E[X1] a.s.

Using the above techniques it is not difficult to prove the following SLLN for
pairwise independent identically distributed sequence of integrably bounded
ck(E)-valued (i.e. convex norm compact valued) random sets in the primal
Banach space E. We summarize this fact as follows.

Theorem 4.8 Let E be a Banach space such its dual is strongly separable.
Let L1

cwk(E)(F) (resp. L1
ck(E)(F)) the set of all integrably bounded cwk(E)-

valued (resp. ck(E)-valued (i.e. convex weakly compact valued) (resp. convex
compact valued) random sets in E. Then the following hold
(a) Let B be a sub-σ-algebra of F , then for any X,Y ∈ L1

cwk(E)(F), EBX,EBY ∈
L1
cwk(E)(B) and for any B ∈ B∫

B
dHE

(EBX,EBY )dP ≤
∫
B
dHE

(X,Y )dP

(b) Let (Xn) be a pairwise independent identically distributed sequence of
integrably bounded ck(E)-valued (i.e. convex norm compact valued) random
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sets in E, such that g := supn∈N |Xn| ≤ α is integrable, then

E[Xn] = E[X1] ∈ ck(E), ∀n ∈ N

and

dHE

(
1

n

n∑
i=1

Xi, E[X1]

)
= 0 a.s.

Now we proceed to further variants for SLLN in the dual space. We need
the following definition.

Definition 4.9 The Banach space E is weakly compactly generated (WCG)
if there exists a weakly compact subset of E whose linear span is dense in
E.

Theorem 4.10 Assume that E is WCG. Let (Xn)n∈N be a sequence of in-
dependent ck(E∗b )-valued random sets satisfying:
(i) Xn ⊂ gBE∗, for all n ∈ N and for some g ∈ L1

R(F).

(ii)
∑∞

n=1
E(|Xn|2)

n2 <∞.
(iii) There exists M ∈ K∗ such that

w∗-lsE[Xn] ⊂M ⊂ w∗-li E[Xn,FXn ].

Then we have

w∗-K- lim
n→∞

1

n

n∑
i=1

Xi(ω) = M a.s.

Proof. Step 1. By (iii) and Proposition 4.1-(3) it is clear that

w∗-K- lim
n→∞

E[Xn] = M.

By (i) the sequence (E[Xn])n∈N is uniformly bounded in E∗. Since E is
WCG, by virtue of (ii) and [29, Theorem 4.11] we have equivalently

lim
n→∞

E(δ∗(x,Xn)) = lim
n→∞

δ∗(x,E[Xn]) = δ∗(x,M) ∀x ∈ E.

Recall that D1 = (ek)k∈N is a dense sequence in BE . Then from the in-
dependence of (Xn)n∈N, for each k ∈ N, the sequence (δ∗(ek, Xn))n∈N is
independent in L2

R(Ω,F , P ) and by (ii) we have

∞∑
n=1

E(|δ∗(ek, Xn)|2)

n2
≤
∞∑
n=1

E(|Xn|2)

n2
<∞.
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As R is of type 2, applying the law of large numbers to this sequence yields

lim
n→∞

1

n

n∑
i=1

[δ∗(ek, Xi)− E(δ∗(ek, Xi)] = 0 a.s.

Consequently

lim
n→∞

δ∗(ek,
1

n

n∑
i=1

Xi) = lim
n→∞

1

n

n∑
i=1

δ∗(ek, E[Xi]) = δ∗(ek,M) a.s.

Using the preceding equality and standard argument, we see that

(4.3) w∗-ls
1

n

n∑
i=1

Xi ⊂M a.s.

Step 2. Let x∗ ∈M ⊂ w∗-li E[Xn,FXn ]. There is fn ∈ S1
Xn

(FXn) such that
x∗ = w∗- limn→∞E(fn). For each k ∈ N, let us write

(4.4) |〈ek, x∗−
1

n

n∑
i=1

fi〉 ≤ |〈ek, x∗−
1

n

n∑
i=1

E(fi)〉|+ |〈ek,
1

n

n∑
i=1

[E(fi)−fi]〉|.

From the independence of (Xn), (fn) is also independent, so for each k ∈ N,
the sequence (〈ek, fn〉)n∈N is independent and by (ii) we have

∞∑
n=1

E(|〈ek, fn〉|2)

n2
≤
∞∑
n=1

E(|fn|2)

n2
≤
∞∑
n=1

E(|Xn|2)

n2
<∞.

As R is of type 2, appplying the law of large numbers to the sequence
(〈ek, fn〉)n∈N yields

lim
n→∞

1

n

n∑
i=1

[〈ek, fi)− E(〈ek, fi〉)] = 0 a.s.

It is easy to see that

lim
n→∞

〈ek, x∗ −
1

n

n∑
i=1

E(fi)〉 = 0.

From the estimate (4.4) we conclude that

lim
n→∞

〈ek, x∗-
1

n

n∑
i=1

fi〉 = 0 a.s.
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Consequently

x∗ ∈ w∗-li 1

n

n∑
i=1

Xi a.s.

As M and w∗-li 1
n

∑n
i=1Xi are weak star compact, we deduce that

(4.5) M ⊂ w∗-li 1

n

n∑
i=1

Xi a.s.

Then the required result follows from (4.3) and (4.5).

Corollary 4.11 Assume that E is WCG. Let (Xn)n∈N be a sequence of
independent ck(E∗b )-valued random sets satisfying:
(j)Xn ⊂ gBE∗, for all n ∈ N and for some g ∈ L2

R(F).
(jj) There exists M ∈ K∗ such that

w∗-lsE[Xn] ⊂M ⊂ w∗-li E[Xn,FXn ].

Then we have

w∗-K- lim
n→∞

1

n

n∑
i=1

Xi(ω) = M a.s.

Remarks 4.12 1) Theorems 4.4-4.7-4.8-4.10 are a dual version of similar
results obtained by [35, 41] in Banach spaces. Theorem 4.7 is even new
in the context of primal Banach spaces. See also [14, 33, 34] for more
results on the law of large numbers for random sets in Banach spaces. It
is worth to mention that the techniques developed in Theorem 4.4 provide
a convexification in the limit if we consider the compact valued integrably
bounded random sets.
2) A law of large numbers for pairwise independent elements in L1

E∗ [E]
satisfying some tightness condition is available in [12, Corollary 2] which is
a version of Etemadi’s SLLN for elements in L1

E∗ [E] in the topology E∗c . See
[12, Remark 3], and [43, Theorem 3.3].

5 Law of large numbers and ergodic theorem in-
volving subdifferential operators

We need to recall and summarize some notions on the subdifferential map-
ping of local Lipchizean functions developed by L. Thibault [44]. Let f :
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E → R be a locally Lipchizean function. By Christensen [18, Theorem 7.5],
there is a set Df such that its complementary is Haar-nul (hence Df is dense
in E) such that for all x ∈ Df and for all v ∈ E

rf (x, v) = lim
δ→0

f(x+ δv)− f(x)

δ

exists and v 7→ rf (x, v) is linear and continuous. Let us set ∇f(x) =
rf (x, .) ∈ E∗. Then rf (x, v) = 〈∇f(x), v〉, ∇f(x) is the gradient of f at
the point x. Let us set

Lf (x) = { lim
j→∞

∇f(xj)|xj ∈ Df , xj → x}.

By definition, the subdifferential ∂f(x) in the sense of Clarke [20] at the
point x ∈ E is defined by

∂f(x) = coLf (x).

The generalized directional derivative of f at a point x ∈ E in the direction
v ∈ E is denoted by

f .(x, v) = lim sup
h→0,δ→0

f(x+ h+ δv)− f(x+ h)

δ
.

Proposition 5.1 Let f : E → R be a locally Lipchizean function. Then the
subdifferential ∂f(x) at the point x ∈ E is convex weak star compact and

f .(x, v) = sup{〈ζ∗, v〉|ζ∗ ∈ ∂f(x)} ∀v ∈ E

that is, f .(x, .) is the support function of ∂f(x).

Proof. See Thibault [44, Proposition I.12].
Here are some useful properties of the subdifferential mapping.

Proposition 5.2 Let f : E → R be a locally Lipchizean function. Then
the convex weak star compact valued subdifferential mapping ∂f is upper
semicontinuous with respect to the weak star topology.

Proof. See [44, Proposition I. 17]. Indeed we have

δ∗(v, ∂f(x)) = f .(x; v) = lim sup
h→0,δ→0

[f(x+ h+ δv)− f(x+ h)]

δ

As f .(.; v) is upper semicontinuous and ∂f is convex compact valued in E∗s ,
by [17] or [46], ∂f is upper semicontinuous in E∗s .
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Proposition 5.3 Let (T, T ) a measurable space and f : T × E → R such
that
f(., ζ) is T -measurable, for every ζ ∈ E.
f(t, .) is locally Lipschitzean for every t ∈ T .
Let f .t(x; v) the directional derivative of f(t, .) := ft in the direction v for
every fixed t ∈ T . Let x and v be two T -measurable mappings from T to E.
Then the following hold:
(a) the mapping t 7→ f .t(x(t); v(t)) is T -measurable.
(b) the mapping t 7→ ∂ft(x(t)) is graph measurable, that is, its graph belongs
to T ⊗ B(E∗s ).

Proof. See Thibault [44, Proposition I.20 and Corollary I. 21]. Note that
the convex weak star compact valued mapping t 7→ ∂ft(x(t)) is scalarly T -
measurable, and so enjoys good measurability properties because E∗s is a
locally convex Lusin space. See in particular Proposition 3.1.

We end with two specific applications in the law of large numbers and
ergodic theorem involving the subdifferential operators.

Theorem 5.4 Assume that E is WCG. Let f : E → R be a Lipschitzean
mapping, i.e. there exists β > 0 such that for all x, y ∈ E, |f(x) − f(y)| ≤
β||x− y||. Let (un)n∈N be an i.i.d sequence in L1

E(Ω,F , P ). Then we have

w∗-K- lim
n→∞

1

n

n∑
i=1

∂f(ui(ω)) =

∫
Ω
∂f(u1(ω))dP (ω) a.s.

where
∫

Ω ∂f(u1(ω))dP (ω) is the Aumann-Gelfand multivalued integral of the
convex weak star compact valued mapping ∂f(u1(.)).

Proof. By the Lipschitz assumption it is clear that |∂f(x)| ≤ β ∀x ∈ E
so that for each n ∈ N , ω 7→ ∂f(un(ω)) is a convex weak star com-
pact valued and integrably bounded, shortly ∂f(un(.)) ∈ L1

cwk(E∗s )(F) with

|∂f(un(ω))| ≤ β for all n ∈ N and for all ω ∈ Ω. Indeed by Proposition
5.3, ω 7→ f .(un(ω); v(ω)) is F-measurable, for all n ∈ N and for all F-
measurable mapping v : Ω → E, in particular, using Proposition 5.2, the
support function

δ∗(v, ∂f(un(.))) = f .(un(ω); v)

of the cwk(E∗)-valued mapping ∂f(un(.)) is F-measurable, for every v ∈ E.
Recall that for each v ∈ E, the function f .(.; v) is upper semicontinuous on
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E and is bounded because

|δ∗(v, ∂f(x)| = |f .(x; v)| ≤ β||v||.

Now let D1 = (ek)k∈N be a dense sequence in the closed unit ball BE .
From the above consideration, it is clear that for each k ∈ N, the sequence
(δ∗(ek, ∂f(un(.))))n = (f .(un(.); ek))n is i.i.d in L1

R(Ω,F , P ). According to
the classical law of large numbers, we have for a.s. ω ∈ Ω

lim
n→∞

1

n

n∑
i=1

δ∗(ek, ∂f(ui(ω))) = lim
n→∞

1

n

n∑
i=1

f .(ui(ω); ek)

= E(f .(u1(.); ek)) = E(δ∗(ek, ∂f(u1(.)))) = δ∗(ek,

∫
Ω
∂f(u1(ω))dP (ω)).

By density argument we may assert that

lim
n→∞

δ∗(e,
1

n

n∑
i=1

∂f(ui(ω))) = δ∗(e,

∫
Ω
∂f(u1(ω))dP (ω)) a.s.

for all e ∈ BE
2. Since ∂f(un(ω)) ⊂ βBE∗ for all n ∈ N and for all ω ∈ Ω

and
∫

Ω ∂f(u1(ω))dP (ω) ⊂ βBE∗ and the Banach space E is WCG, by [29,
Theorem 4.11], we deduce that

w∗-K- lim
n→∞

1

n

n∑
i=1

∂f(ui(ω)) =

∫
Ω
∂f(u1(ω))dP (ω) a.s.

Theorem 5.5 Assume that E is WCG. Let T be a F-measurable transfor-
mation of Ω preserving P , I the σ algebra of invariant sets. Let f : Ω×E →
R be a mapping satisfying
(a) For every x ∈ E, f(., x) is F-measurable on Ω.
(b) There exists β ∈ L1

R+(Ω,F , P ) such that for all ω ∈ Ω, for all x, y ∈ E

|f(ω, x)− f(ω, y)| ≤ β(ω)||x− y||.

Then for any u ∈ L0
E(Ω, I, P ) the following holds

w∗-K- lim
n→∞

1

n

n−1∑
i=1

∂fT iω(u(ω)) = EI [∂f.(u(.))](ω) a.s.

where ∂f.(u(.)) is the mapping ω 7→ ∂fω(u(ω)) and EI [∂f.(u(.))] is the
conditional expectation of ∂f.(u(.)) with respect to I.

2For more details, one may consult the proof of Theorem 5.5 below
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Proof. By Propositions 5.1-5.3 recall that

δ∗(v, ∂fω(x)) = f .ω(x; v) = lim sup
h→0, δ→0

[fω(x+ h+ δv)− fω(x+ h)]

δ

≤ β(ω)||v|| = δ∗(v, β(ω)BE∗)

for every ω ∈ Ω, for every v ∈ E and for every x ∈ E and the mapping ω 7→
f .ω(u(ω); v(ω)) is F-measurable for every F-measurable mapping u : Ω→ E
and v : Ω→ E. Let D1 = (ek)k∈N be a dense sequence in the closed unit ball
BE .Then the mapping f .ω(u(ω); ek) is F-measurable for every I-measurable
mapping u : Ω→ E and since u is I-measurable

f .T iω(u(ω); ek) = f .T iω(u(T iω); ek) ∀ω ∈ Ω

so that by the classical ergodic theorem for real valued quasi-integrable
functions, see e.g. [9, 47] we have

lim
n→∞

1

n

n−1∑
i=1

f .T iω(u(ω); ek) = lim
n→∞

1

n

n−1∑
i=1

f .T iω(u(T iω); ek) = EIf .ω(u(ω); ek).

By Proposition 5.1 we have

f .ω(u(ω); ek) = δ∗(ek, ∂fω(u(ω))) ∀ω ∈ Ω,

f .T iω(u(ω); ek) = δ∗(ek, ∂fT iω(u(ω))) ∀ω ∈ Ω.

By the above computation we see that the mapping ω 7→ ∂fω(u(ω)) belongs
to L1

cwk(E∗s )(F) because ∂fω(u(ω)) ⊂ β(ω)BE∗ for all ω ∈ Ω. Further,

by Theorem 3.4 (or Theorem 3.5) the conditional expectation EI [∂f.(u(.))]
belongs to L1

cwk(E∗s )(I) with

δ∗(ek, E
I [∂f.(u(.))](ω)) = EIδ∗(ek, ∂fω(u(ω))) = EIf .ω(u(ω); ek) a.s.

Finally by combining these equalities we get

lim
n→∞

δ∗(ek,
1

n

n−1∑
i=1

∂fT iω(u(ω))) = δ∗(ek, E
I [∂f.(u(.))](ω)) a.s.

Since ∂fω(u(ω)) ⊂ β(ω)BE∗ and EI [∂f.(u(.))](ω) ⊂ EIβ(ω)BE∗ , for all
ω ∈ Ω, we deduce by denseness that

lim
n→∞

δ∗(e,
1

n

n−1∑
i=1

∂fT iω(u(ω))) = δ∗(e, EI [∂f.(u(.))](ω)) a.s. ∀e ∈ BE .
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This need a careful look. Applying the classical Birkhoff ergodic theorem to
β yields

lim
n→∞

1

n

n−1∑
i=0

β(T iω) = EIβ(ω) a.s.

Consequently 1
n

∑n−1
i=0 β(T iω) is pointwise bounded a.s., say

γ(ω) := sup
n∈N

1

n

n−1∑
i=0

β(T iω) <∞ a.s.

It follows that

1

n

n−1∑
i=0

∂fT iω(u(ω)) ⊂ [
1

n

n−1∑
i=0

β(T iω)]BE∗ ⊂ γ(ω)BE∗ a.s.

There is a negligible set N0 such that for each ω ∈ Ω \N0

γ(ω) := sup
n∈N

1

n

n−1∑
i=0

β(T iω) <∞

and there is a negligible set Nk such that for each ω ∈ Ω \Nk

lim
n→∞

δ∗(ek,
1

n

n−1∑
i=0

∂fT iω(u(ω))) = δ∗(ek, E
I [∂f.(u(.))](ω)).

Then N = ∪k≥0Nk is negligible. Let ω ∈ Ω \ N , e ∈ BE and ε > 0. Pick
ej ∈ D1 such that

max{δ∗(e− ej , EIβ(ω)BE∗), δ
∗(ej − e, EIβ(ω)BE∗)} < ε

and
max{δ∗(e− ej , γ(ω)BE∗), δ

∗(ej − e, γ(ω)BE∗)} < ε.

For simplicity let us set

Sn(ω) :=
1

n

n−1∑
i=0

∂fT iω(u(ω)), ∀n ∈ N ∀ω ∈ Ω.

Let us write the estimate

|δ∗(e, Sn(ω))− δ∗(e, EI [∂f.(u(.))](ω))|
≤|δ∗(e, Sn(ω))− δ∗(ej , Sn(ω))|

+ |δ∗(ej , Sn(ω))− δ∗(ej , EI [∂f.(u(.))](ω))|
+ |δ∗(ej , EI [∂f.(u(.))](ω))− δ∗(e, EI [∂f.(u(.))](ω))|

28



As Sn(ω) ⊂ γ(ω)BE∗ and EI [∂f.(u(.))](ω) ⊂ EIβ(ω)BE∗ for all n ∈ N and
for all ω ∈ Ω \N , we have the estimates

|δ∗(e, Sn(ω))− δ∗(ej , Sn(ω))|
≤ max{δ∗(e− ej , γ(ω)BE∗), δ

∗(ej − e, γ(ω)BE∗)} < ε

and

|δ∗(ej , EI [∂f.(u(.))](ω))− δ∗(e, EI [∂f.(u(.))](ω))|
≤ max{δ∗(e− ej , EIβ(ω)BE∗), δ

∗(ej − e, EIβ(ω)BE∗)} < ε.

Finally we get

|δ∗(e, Sn(ω))− δ∗(e, EI [∂f.(u(.))](ω))|
< |δ∗(ej , Sn(ω))− δ∗(ej , EI [∂f.(u(.))](ω))|+ 2ε.

As |δ∗(ej , Sn(ω)) − δ∗(ej , [EI∂f.(u(.))](ω))| → 0, from the preceding esti-
mate, it is immediate to see that for ω ∈ Ω \N and e ∈ BE we have

lim
n→∞

δ∗(e,
1

n

n−1∑
i=0

∂fT iω(u(ω))) = δ∗(e, EI [∂f.(u(.))](ω)).

In other words, 1
n

∑n−1
i=1 ∂fT iω(u(ω)) converges scalarly a.s. to EI [∂f.(u(.))](ω).

Since E is WCG, by [29, Theorem 4.11], we conclude that

w∗-K- lim
n→∞

1

n

n∑
i=1

∂fT iω(u(ω)) = EI [∂f.(u(.))](ω) a.s.

Corollary 5.6 With the hypothesis and notations of Theorem 5.5, if T is
ergodic, then the following holds

w∗-K- lim
n→∞

1

n

n∑
i=1

∂fT iω(u(ω)) = E[∂f.(u(.))] a.s.

where ∂f.(u(.)) is the mapping ω 7→ ∂fω(u(ω)) and

E[∂f.(u(.))] :=

∫
Ω
∂fω(u(ω))dP (ω)

is the expectation of ∂f.(u(.)).
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We end the paper with an unusual closure type lemma arisen in evolution
problems, see [4, 10, 27, 39, 40, 44, 45] and the references therein.

Theorem 5.7 Assume that E is WCG. Let T be a F-measurable transfor-
mation of Ω preserving P , I the σ algebra of invariant sets. Let f : Ω×E →
R be a mapping satisfying
(a) For every x ∈ E, f(., x) is F-measurable on Ω.
(b) There exists β ∈ L1

R+(Ω,F , P ) such that for all ω ∈ Ω and for all
x, y ∈ E

|f(ω, x)− f(ω, y)| ≤ β(ω)||x− y||.

Let g : Ω× E → R be a mapping satisfying
(c) For every x ∈ E, g(., x) is F-measurable on Ω.
(d) There exists λ ∈ L1

R+(Ω,F , P ) such that for all ω ∈ Ω and for all
x, y ∈ E

|g(ω, x)− g(ω, y)| ≤ λ(ω)||x− y||.

Let u ∈ L0
E(Ω, I, P ), and let (un)n∈N be a sequence in L0

E(Ω,F , P ) which
pointwise norm converges to u∞ ∈ L0

E(Ω,F , P ) and (vn)n∈N be a sequence in
L1
E∗ [E](Ω,F , P ) which σ(L1

E∗ [E], L∞E ) converges to v∞ ∈ L1
E∗ [E](Ω,F , P ).

Assume that

0 ∈ vn(ω) +
1

n

n−1∑
i=1

∂fT iω(u(ω)) + ∂gω(un(ω)) ∀n ∈ N, ∀ω ∈ Ω

Then the following inclusion holds

−v∞(ω) ∈ EI [∂f.(u(.))](ω) + ∂gω(u∞(ω)) a.s. ω ∈ Ω.

Proof. Let (ek)k∈N be a dense sequence in the closed unit ball BE . From
the inclusion

0 ∈ vn(ω) +
1

n

n−1∑
i=1

∂fT iω(u(ω)) + ∂gω(un(ω)), ∀n ∈ N, ∀ω ∈ Ω.

it follows that, for each k ∈ N,

0 ≤ 〈ek, vn(ω)〉+δ∗(ek,
1

n

n−1∑
i=1

∂fT iω(u(ω)))+δ∗(ek, ∂gω(un(ω))), ∀n ∈ N, ∀ω ∈ Ω.

30



For A ∈ F and for k ∈ N, we have by integrating this inequality

(5.1) 0 ≤
∫
A
〈ek, vn(ω)〉dP (ω) +

∫
A
δ∗(ek,

1

n

n−1∑
i=1

∂fT iω(u(ω)))dP (ω)

+

∫
A
δ∗(ek, ∂gω(un(ω)))dP (ω).

It is clear that

(5.2) lim
n→∞

∫
A
〈ek, vn(ω)〉dP (ω) =

∫
A
〈ek, v∞(ω)〉dP (ω).

By Theorem 5.5

lim
n→∞

δ∗(ek,
1

n

n−1∑
i=1

∂fT iω(u(ω))) = δ∗(ek, E
I [∂f.(u(.))](ω)) a.s.

so that by Lebesgue-Vitali theorem
(5.3)

lim
n→∞

∫
A
δ∗(ek,

1

n

n∑
i=1

∂fT iω(u(ω)))dP (ω) =

∫
A
δ∗(ek, E

I [∂f.(u(.))](ω))dP (ω).

Let us examine the last integral∫
A
δ∗(ek, ∂gω(un(ω))dP (ω).

We have clearly

lim sup
n→∞

g.ω(un(ω), ek) ≤ g.ω(u∞(ω), ek) = δ∗(ek, ∂gω(u∞(ω))) ≤ λ(ω)

so that

(5.4) lim sup
n→∞

∫
A
δ∗(ek, ∂gω(un(ω)))dP (ω) ≤

∫
A
g.ω(u∞(ω), ek)dP (ω)

=

∫
A
δ∗(ek, ∂gω(u∞(ω)))dP (ω).

By passing to the limit when n goes to ∞ in (5.1) and using (5.2) , (5.3),
and (5.4), we get

0 ≤
∫
A
〈ek, v∞(ω)〉+

∫
A
δ∗(ek, E

I [∂f.(u(.))](ω))dP (ω)

+

∫
A
δ∗(ek, ∂gω(u∞(ω)))dP (ω)

=

∫
A

[〈ek, v∞(ω)〉+ δ∗(ek, E
I [∂f.(u(.))](ω)) + δ∗(ek, ∂gω(u∞(ω)))]dP (ω)
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which implies

0 ≤ 〈ek, v∞(ω)〉+ δ∗(ek, E
I [∂f.(u(.))](ω)) + δ∗(ek, ∂gω(u∞(ω))) a.s.

which by density and weak star compactness of conditional expectation and
subdifferential yields

−v∞(ω) ∈ EI [∂f.(u(.))](ω) + ∂gω(u∞(ω)) a.s.

Remark 5.8 In the particular case when E is reflexive, L1
E∗ [E](Ω,F , P ) co-

incides with the usual Lebesgue-Bochner space L1
E∗b

(Ω,F , P ), and Theorem

5.7 is even new when E is reflexive separable.

At this point we present a variant of Theorem 5.7 in a separable Hilbert
space. Recall that, for a given ρ ∈]0,+∞], a nonempty subset S of a Hilbert
space H is ρ-prox-regular or equivalently ρ-proximally smooth [21, 45] if and
only if every nonzero proximal normal to S can be realized by a ρ-ball. This
is equivalent to say that for every x ∈ S, and for every v 6= 0, v ∈ Np(S;x),

〈 v
||v||

, x′ − x〉 ≤ 1

2
ρ||x′ − x||2

for all x′ ∈ S where Np
S(x) is the proximal normal cone of S at the point

x ∈ S defined by

Np
S(x) = {ξ ∈ H : ∃r > 0, x ∈ ProjS(x+ rξ)}.

We make the convention 1
ρ = 0 for ρ = +∞ and recall that for ρ = +∞,

the ρ-proximal regularity of S is equivalent to the convexity of S. Let
f : H → R ∪ {+∞} a proper function and x ∈ domf with f(x) < +∞, the
proximal subdifferential of f at x is the set ∂pf(x) of all elements v ∈ H for
which there exists ε > 0 and r > 0 such that

f(y) ≥ f(x) + 〈v, y − x〉 − r||y − x||2

for all y ∈ BH(x, ε).
The following proposition summarizes some important consequences of

proximally regular sets, for the proofs we refer to [6, 27].

Proposition 5.9 For any nonempty ρ-prox-regular closed subset S of H
and x ∈ S, the following hold
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1) ∂pdS(x) = Np
S(x)

⋂
BH(0, 1) where BH(0, 1) is the closed unit ball

in H, and ∂pdS(x) is the proximal subdifferential of the distance function
dS : x 7→ d(x, S) at the point x.
(2) The proximal subdifferential ∂pdS(x) coincides with the Clarke subdif-
ferential ∂cdS(x) at all points x ∈ S satisfying d(x, S) < ρ.
3) For all x ∈ H with dS(x) ≤ ρ, the projection ProjS(x) is single-valued.
4) Let C : [0, T ]×H ⇒ H be a ρ-prox regular closed valued mapping satis-
fying

|d(u,C(t, x))− d(v, C(s, y))| ≤ ||u− v||+ v(t)− v(s) + L||x− y||

for all u, x, v, y in H and for all s ≤ t in [0, T ], where v : [0, T ] → R+ is a
nondecreasing absolutely continuous function and L is a positive constant.
Then the convex weakly compact valued mapping (t, x, y) → ∂pdC(t,x)(y)
satisfies the upper semicontinuity property: Let (tn, xn) be a sequence in
[0, T ]×H converging to some (t, x) ∈ [0, T ]×H, and (yn) be a sequence in
H with yn ∈ C(tn, xn) for all n, converging to y ∈ C(t, x), then, for any
z ∈ H,

lim sup
n

δ∗(z, ∂pdC(tn,xn)(yn)) ≤ δ∗(z, ∂pdC(t,x)(y)).

We finish with a variant of Theorem 5.7.

Theorem 5.10 Assume that H is a separable Hilbert space. Let T be a F-
measurable transformation of Ω preserving P , I the σ algebra of invariant
sets. Let C : H ⇒ H be a ρ-prox regular closed valued mapping satisfying

|d(u,C(x))− d(v, C(y))| ≤ ||u− v||+ L||x− y||

for all u, x, v, y in H where L is a positive constant. Let f : Ω×H → R be
a mapping satisfying
(a) For every x ∈ H, f(., x) is F-measurable on Ω.
(b) There exists β ∈ L1

R+(Ω,F , P ) such that for all ω ∈ Ω and for all
x, y ∈ H

|f(ω, x)− f(ω, y)| ≤ β(ω)||x− y||.

Let u ∈ L0
H(Ω, I, P ), and let (xn)n∈N, (yn)n∈N be two sequences in L0

H(Ω,F , P )
which pointwise norm converge to x∞ and y∞ in L0

H(Ω,F , P ) with yn(ω) ∈
C(xn(ω)) for all n ∈ N and for all ω ∈ Ω and (vn)n∈N be a sequence in
L1
H(Ω,F , P ) which σ(L1

H , L
∞
H ) converges to v∞ ∈ L1

H(Ω,F , P ). Assume
that

0 ∈ vn(ω) +
1

n

n−1∑
i=1

∂fT iω(u(ω)) + ∂pdC(xn(ω))(yn(ω)) ∀n ∈ N, ∀ω ∈ Ω.
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Then the following inclusion holds

−v∞(ω) ∈ EI [∂f.(u(.))](ω) + ∂pdC(x∞(ω))(y∞(ω)) a.s. ω ∈ Ω.

Proof. For shortness we omit the proof which is a direct application of Propo-
sition 5.9 and Theorem 5.7.

We conclude this paper with a problem and remarks.

Problem and remarks 5.11 (1) In the context of Banach spaces, fairly
general versions of law of large numbers for double array of independent (or
pairwise independent) unbounded closed valued random sets in a separable
Banach space are obtained in [14, Theorems 4.5-4.6].
(2) The usual embedding method for the law of large numbers for convex
compact valued random sets in separable Banach space seems unavailable
in the framework of dual space and the use of Bochner integration involving
the Borel tribe B(E∗b ) is irrelevant in this context. For more properties of
subdifferential of locally Lipschitzean functions defined on separable Banach
space involving the use of Haar measure and the Suslin property of the weak
star dual space, we refer to [27, 44].
(3) The present study is a step forward in the convergence problem for
both the law of large numbers and ergodic theorem for integrably bounded
convex weak star compact valued Gelfand-integrable mappings, several open
problems will appear when this integrability assumption is no longer true,
even the existence of conditional expectation for these mappings is available.
In particular, the law large numbers for double array of independent (or
pairwise independent) weak star compact valued random set is an open
problem, even for L1

E∗ [E] elements. Compare with the SLLN of Csorgo and
al [22], Etemadi [28] and Castaing-Raynaud de Fitte [12, Corollary 2]. In
particular, a.s. convergence in E∗c for pairwise independent i.i.d sequences
in L1

E∗ [E] is provided in [12]. In view of applications, it is worthwhile to
present a study of independence and distribution for unbounded random
sets in the dual space. At this point one may consult the papers by Hess
dealing with Banach separable spaces or more generally complete separable
metric spaces [31, 32, 33, 34] where further related results can be found.
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Sci. Paris Ser. I 300 (1985), 177-180.

[33] C. Hess, Multivalued strong laws of large numbers in the Slice topol-
ogy. Application to integrands, Set-valued Analysis 2 (1994), 183-205.

[34] C. Hess, The distribution of unbounded random sets and the mul-
tivalued strong law of large numbers in nonreflexive Banach spaces,
Journal of Convex Analysis 6 (1) (1999),163-182.

[35] F. Hiai, Convergence of conditional expectation and strong law of
large numbers for multivalued random variables, Trans. A. M. S 291
(2) (1985), 613-627.

37



[36] F. Hiai and H. Umegaki, Integrals, conditional expectations and mar-
tingales of multivalued functions, Journal of Multivariate Analysis, 7
(1977), 149-182.

[37] J. Hoffmann-Jørgensen, G. Pisier, The law of large numbers and the
central limit theorem in Banach spaces, Ann. Probab., 4 (1976), pp.
587-599.

[38] A. Jakubowski. The almost sure Skorokhod representation for sub-
sequences in nonmetric spaces. Teor. Veroyatnost. i Primenen.,
42(1):209–216, 1997.

[39] M. D. P. Monteiro Marques, Differential inclusions in Nonsmooth Me-
chanical Problems, Shocks and Dry Friction, Progress in Nonlinear
Differential Equations and Their Applications, Birkhauser 9 (1993).

[40] J. J. Moreau, Evolution problem asssociated with a moving convex set
in a Hilbert space, J. Diff. Eqs. 26 (1977), 347-374.

[41] Paul Raynaud de Fitte, Deux lois des grands nombres pour les en-
sembles aléatoires, Séminaire d’Analyse Convexe, Montpellier, (1991),
exposé No 1.
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