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MEASURE AND INTEGRATION

Compactness criteria for the stable topology

by

Paul RAYNAUD de FITTE

Summary. Adapting a general result of Topsøe [32], we prove a compactness criterion

for the stable topology on the set of measures on the product of a measurable space and a

Suslin (nonnecessarily regular) topological space. We also extend a compactness criterion

of Jacod and Mémin [17] and we apply these results to the case of Young measures.

1. Introduction and preliminaries. Stable convergence has been discovered
several times and is used under different names in the Calculus of Variations, in
Control Theory, in Probability Theory, and in other fields. The expression “sta-
ble convergence” stems from Rényi [27] and is employed by probabilists, but this
convergence was invented much earlier by L. C. Young [40].

Let us first present stable convergence in a particular case. Let (fn)n be a
sequence of measurable functions defined on a finite measure space (Ω,S, λ), with
values in Rd (the frame we will consider in this paper is much more general). The
sequence (fn)n is stably convergent if, for every A ∈ S and every bounded continuous
function ϕ : Rd → R, the sequence (

∫
A
ϕ ◦ fn dλ)n is convergent. The limit of (fn)

is the mapping (A,ϕ) 7→ limn

∫
A
ϕ ◦ fn dλ. It appears that this mapping can be

identified with a measure µ on Ω× Rd, defined by∫
Ω×Rd

1lA ⊗ ϕdµ = lim
n

∫
A

ϕ ◦ fn dλ

for every A and every ϕ as above (we denote by 1lA the indicator function of A and
g ⊗ h denotes the mapping (ω, x) 7→ g(ω)h(x)). Note that the margin of µ on Ω is
λ. In this convergence, each fn can also be identified with a measure δfn on Ω×Rd,
namely δfn =

∫
Ω
δω ⊗ δfn(ω) dλ(ω), where δx denotes the Dirac mass on x. In other
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words, δfn is supported by the graph of fn and its margin on Ω is λ. We then have,
for every A and every ϕ,∫

Ω×Rd
1lA ⊗ ϕdδfn =

∫
A

ϕ ◦ fn dλ.

So, stable convergence of (fn)n to µ can be expressed by

lim
n

∫
Ω×Rd

1lA ⊗ ϕdδfn =

∫
Ω×Rd

1lA ⊗ ϕdµ

for every A and every ϕ. In this example, stable convergence can be seen as a
convergence in the space of measures on Ω×Rd which have common margin λ on Ω.
These measures are sometimes called Young measures, or relaxed controls, see e.g.
[38] or [4] for an introduction to Young measures and their applications. So, stable
convergence gives “relaxed” limits to sequences of functions, that is, limits which are
not necessarily functions, but can be measures. For example, stable convergence is
used to provide generalized solutions to variational problems or to control problems,
see e.g. [28], or to provide weak solutions to stochastic differential equations [24].
Stable convergence is also used in limit theorems of probability, see [16, 21]. This
convergence is topologisable, and compactness criteria for the stable topology are
used to prove, for example, convergence results, or the existence of (relaxed) optimal
controls. Assume that (fn)n is a weakly convergent sequence in L1(Ω,S, λ;Rd). Then
(fn)n is sequentially relatively compact in the stable topology; if furthermore (fn)
is not strongly convergent, there exists a stably convergent subsequence (f ′n)n, the
limit of which is not a function from Ω to Rd, but a Young measure which describes
the oscillations of (f ′n)n around its weak limit [38, 39].

In this paper, we study stable convergence in the space of finite nonnegative
measures on the product Ω × T, where (Ω,S) is a measurable space and T is a
Suslin topological space. Thus, the measures we consider do not necessarily have
the same margin on Ω. This is the point of view chosen by Schäl [29] in the case
when T is separable metrizable and Ω is topological, by Jacod and Mémin [17] and
Galdéano [14] in the case when T is Polish, and by Balder [5] in the case when T is
Suslin regular. The definition we choose yields a finer topology than the definition
chosen by Schäl, by Jacod and Mémin and by Balder, but both definitions coincide
in the metric case, as will be made clear in the sequel. With our definition, the
stable topology is a particular case of Topsøe’s w–topology [32]. However, Topsøe’s
criteria are not directly applicable in our situation, some work is necessary to adapt
them. This is done in Section 2. As a consequence, we obtain a generalized version of
Jacod and Mémin’s compactness criterion [17, 18]. We also obtain a Prokhorov–type
sufficient condition of compactness, similar to that obtained by Balder [5, Theorem
5.2], but with the advantage that is stated for a finer topology.
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In Section 3, we investigate metrizability properties of the stable convergence.
First, a version for stable convergence of the celebrated Portmanteau Theorem is
given (for Young measures, this kind of result is sometimes called a semicontinuity
theorem). This allows to give metrizability and sequential compactness criteria in
the stable topology.

Finally, in Section 4, we apply our results to the particular case of Young mea-
sures (that is, measures on the product Ω × T with a prescribed margin on Ω). In
particular, we obtain a slightly generalized version of Balder’s sequential compact-
ness criterion [2] and a generalization of a result on the equivalence of two tightness
notions for Young measures, which was known in the case when T is Polish [3, 19].

Preliminary definitions and results. Throughout, T is a Hausdorff topological
space. We denote respectively by G, F and K the sets of open, closed and compact
subsets of T. The σ–algebra of Borel subsets of T is denoted by BT.

The space T is Suslin if it is the image of a Polish space by some continuous
mapping. Most usual spaces of analysis are Suslin; we refer to [30] about Suslin
spaces.

The space T is submetrizable if there exists a metrizable topology on T which is
coarser than the original topology of T. Every regular Suslin space is submetrizable.

In the sequel, we are also given a measure space (Ω,S). We call random set every
element of S ⊗ BT. If G is a random set and ω ∈ Ω, we denote by G(ω) the section
{t ∈ T; (ω, t) ∈ G}. The set of random sets G satisfying G(ω) ∈ G for every ω ∈ Ω
is denoted by G, and its elements are called open random sets. We define similarly
the set F of closed random sets and the set K of compact random sets.

By “measure”, we mean nonnegative finite measure. The set of measures on a
measurable space (X,X ) is denoted byM+(X,X ), or byM+(X) when no ambiguity
is to fear. In particular,M+(Ω) denotesM+(Ω,S),M+(T) denotesM+(T,BT) and
M+(Ω× T) denotes M+(Ω× T,S ⊗ BT).

We refer to Topsøe’s book [33] or to Bogachev’s nice survey [6] for complements
in Measure Theory.

We denote respectively by πΩ and πT the canonical projections from Ω× T onto
Ω and T. If µ ∈M+(Ω× T), we denote by (πΩ)] (µ) the measure µ(.×T) image of
µ by πΩ. Similarly, (πT)] (µ) denotes the measure µ(Ω× .) ∈M+(T).

As we mentionned in the Introduction, there are several ways to define a “stable
topology” onM+(Ω× T). One possible stable topology is described in the example
in the Introduction: it is the topology of pointwise convergence on the test functions
1lA ⊗ ϕ, where A runs over S and ϕ runs over the bounded continuous real valued
functions on T. This definition is chosen by Schäl [29], Jacod and Mémin [17]
and Balder [5] (Schäl, followed by Balder, calls it the ws–topology). However, if T
is not completely regular, the set of continuous functions can be restricted to the
constants, see e.g. [31, Example 75], and then the ws–topology becomes very poor.
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We choose a finer topology (Galdéano’s definition [14] is intermediate between ours
and that of [29, 17, 5]): we endowM+(Ω× T) with the coarsest topology such that
the mapping µ 7→ µ(Ω× T) is continuous and such that the mappings µ 7→ µ(G)
are l.s.c. for every G ∈ G. In other words, a net (µα)α∈A in M+(Ω× T) converges
to µ ∈ M+(Ω× T) if and only if limα µ

α(Ω× T) = µ(Ω× T) and, for each G ∈ G,
lim infα µ

α(G) ≥ µ(G). We denote this topology by T and we call it stable topology.
This topology is a particular case of the w–topology of Topsøe [32]. From the
Portmanteau Theorem 3.1 in this paper, when T is Suslin metrizable, the stable
topology coincides with the ws–topology. Following Jacod and Mémin, we use the
terminology “stable topology” because T extends the so called “stable convergence”
defined by Rényi [27, 26] for random variables.

We endow the space M+(T) with the narrow topology, that is, the coarsest
topology such that the mapping µ 7→ µ(T) is continuous and such that the mappings
µ 7→ µ(G) are l.s.c. for every G ∈ G. The space M+(Ω) is endowed with the s–
topology (see [32]), that is, the coarsest topology such that the mapping µ 7→ µ(A)
is continuous for every A ∈ S. Thus T generalizes both the narrow topology on
M+(T) and the s–topology onM+(Ω): if we take S = {∅,Ω}, then (M+(Ω× T),T)
is homeomorphic to M+(T) endowed with the narrow topology, and, similarly, if T
has only one element, then (M+(Ω× T),T) is homeomorphic to M+(Ω) endowed
with the s–topology.

We call universal completion of S the σ–algebra S∗ = ∩µ∈M+(Ω)Sµ, where Sµ is
the µ–completion of S, that is, Sµ is the union of S and the µ–negligible sets. Note
that the setsM+(Ω,S) andM+(Ω,S∗) can be identified via the canonical extension
and restriction maps. Furthermore, the s–topologies on M+(Ω,S) and M+(Ω,S∗)
coincide. Indeed, let (Qα)α∈A be a net in M+(Ω) which converges to Q ∈ M+(Ω)
in the s-topology relative to S. Let A ∈ S∗. We can find B and N in S such that
A4 B ⊂ N and Q(N ) = 0. We then have |Qα(A)−Qα(B)| ≤ Qα(N ) → 0 and
Qα(B) → Q(B), thus Qα(A) → Q(A), which proves that (Qα)α converges to Q in
the s-topology relative to S∗. The converse inclusion of topologies is obvious.

If we replace S by S∗ in the preceding definitions, we use notations such as G∗
or T∗. We say that S is universally complete if S = S∗.

Recall that the space T is said to be second countable if its topology has a
countable base [13].

Proposition 1.1 Assume that T is the union of a sequence (Tn)n of second count-
able Suslin spaces which are Borel subsets of T. Then T∗ = T.

Note that, if T is a countable union of Suslin spaces, it is Suslin. The hypothesis on
T in Proposition 1.1 is of course satisfied if T is Polish and in some other interesting
cases. This is the case if T = (E′, σ(E′,E)) for some separable Banach space E
(consider the closed balls of E′ with radius n ∈ N). More generally, this is the case
if T = (E′, σ(E′,E)) for some (locally convex) separable Fréchet space E. Indeed,
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as E is barrelled, each bounded subset of E′σ is relatively compact, and, from [7,
Proposition 2 page IV.21], there exists a sequence (Kn)n≥1 of closed bounded subsets
of E′σ such that each bounded subset of E′σ is contained in some Kn. Furthermore,
from the separability of E, there exists a countable family of continuous functions
on E′σ which separates the points of E′σ, thus E′σ is submetrizable, thus the compact
sets Kn are metrizable, thus Polish. In this case, from Banach–Dieudonné Theorem
(e.g. [7]), the topology τ of E′σ is the topology τc of uniform convergence on compact
subsets of E. In particular, if E is a Fréchet–Montel space, then τ = τc is also the
topology τb of uniform convergence on bounded subsets of E, that is, T is the strong
dual E′b of E. This is the case if T is the space S ′ of tempered distributions.

The proof of Proposition 1.1 relies on the following lemma, which is an adaptation
of results of Balder [3, Lemmas A4 and A6] (see also [8]). The first part of this lemma
can also be deduced from results of Valadier ([35, 1.14], [36, Proposition 13]).

Lemma 1.2 Assume that T is the union of a sequence (Tn)n of second countable
Suslin spaces which are Borel subsets of T. Let H ∈ G∗ and let Q ∈M+(Ω). There
exists G ∈ G such that H ⊂ G and H(ω) = G(ω) for Q–almost every ω ∈ Ω.

Proof. Assume first that T is a second countable Suslin space. Let U be a countable
basis of T. For each ω ∈ Ω, H(ω) is the union of all U ∈ U such that U ⊂ H(ω).
For each U ∈ U , let

EU = {ω ∈ Ω; U ⊂ H(ω)} = (πΩ ((Ω× U) ∩Hc))c .

From the Projection Theorem (see [9, Theorem III.23]), since T is Suslin, each EU
is S∗–measurable. Furthermore, we have

H =
⋃
U∈U

(EU × U).

For each U ∈ U , let BU ∈ S be such that EU ⊂ BU and Q∗(EU) = Q(BU). We set

G =
⋃
U∈U

(BU × U).

We then have G ∈ G and H ⊂ G. For each U ∈ U , let NU ∈ S∗ be a Q–negligible
set such that EU ∪ NU = BU . Let N = ∪U∈UNU . The set N is negligible and we
have G(ω) = H(ω) for every ω ∈ Ω \ N , which proves the lemma in the case when
T is second countable.

Assume now that T is the union of a sequence (Tn)n of second countable Suslin
spaces which are Borel subsets of T. For each integer n, let Hn = H ∩ (Ω × Tn).
Applying the preceding result to each Hn, we construct a sequence (Gn)n such that,
for each n, Hn ⊂ Gn, Gn ∈ S ⊗ BTn ⊂ S ⊗ BT and Hn(ω) = Gn(ω) for Q–almost
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every ω. Let G̃ = ∪nGn. We have H ⊂ G̃, G̃ ∈ S ⊗ BT and there exists a Q–
negligible set N ∈ S such that H(ω) = G̃(ω) for every ω ∈ N c. We only need to
take G such that

G(ω) =

{
G̃(ω) = H(ω) if ω 6∈ N ,
T otherwise.

An extension of Lemma 1.2 to l.s.c. integrands instead of random sets can easily
be obtained as in [3, 8], or by applying Lemma 1.2 to epigraphs, but we do not need
it here.
Proof of Proposition 1.1. Clearly, we have T ⊂ T∗. Now, let (µα)α∈A be a net in
M+(Ω× T) which converges to some µ ∈ M+(Ω× T) for T. Let Q = (πΩ)] (µ)
and, for each α ∈ A, let Qα = (πΩ)] (µα). We thus have Qα → Q in the s–topology.
Let H ∈ G∗ and let G ∈ G be as in Lemma 1.2. Let N be the Q–negligible set
{ω ∈ Ω; G(ω) 6= H(ω)}. We have

µα(G \H) ≤ Qα(N )→ Q(N ) = 0,

thus

µ(H) ≤ µ(G) ≤ lim inf
α

µα(G) = lim inf
α

µα(H).

Thus (µα)α∈A converges to µ for T∗.

2. Topsøe and Jacod–Mémin Criteria. We call paving on Ω× T any nonempty
set of subsets of Ω× T. We now list some properties of the pavings G and K that
we shall need later. We present them in a similar way as in [32].

Lemma 2.1 (Properties of G and K) Assume that T is Suslin submetrizable
and (Ω,S) is universally complete.

I. K contains ∅ and is closed under finite unions and countable intersections,
II. G contains ∅ and is closed under finite unions and finite intersections (actu-

ally, G is also closed under countable unions, but we shall not need it),
III. K \G ∈ K for all K ∈ K and for all G ∈ G,
IV. G separates the sets in K, that is, for any pair K1, K2 of disjoint elements

of K, we can find a pair G1, G2 of disjoint elements of G such that K1 ⊂ G1 and
K2 ⊂ G2.

V’. Let M be a subset of M+(Ω× T) such that (πΩ)] (M) is relatively compact
in the s-topology of M+(Ω). Then M is uniformly σ–smooth on G at ∅ w.r.t. K,
that is, for any countable family (Ki)i∈I of elements of K which filters downwards
to ∅, we have

inf
i∈I

sup
µ∈M

inf
G∈G, G⊃Ki

µ(G) = 0



7.7 Compactness criteria for the stable topology

(we say that (Ki)i∈I filters downwards to ∅ if ∩i∈IKi = ∅ and if, for any i ∈ I and
any j ∈ I, there exists k ∈ I such that Kk ⊂ Ki ∩Kj).

Remark 2.2 Note that we do not have Property V of [32], that is, semi–compactness
of K (a paving C is said to be semi–compact if, for any countable family of elements
of C which has an empty intersection, there exists a finite subfamily which has an
empty intersection). We shall see however that the weaker Property V’ is sufficient
to yield a result similar to [32, Theorem 4].

Proof of Lemma 2.1. Actually, only Properties IV and V’ need a proof. We denote
by d a continuous distance on T and by τ0 the topology (coarser than the original
topology τ of T) generated by d.

Proof of IV. Let K1, K2 be disjoint elements of K.
Assume first that K1 and K2 have nonempty values. For each ω ∈ Ω, K1(ω)

and K2(ω) are compact for τ0, thus d(K1(ω), K2(ω)) > 0. Furthermore, as (Ω,S)
is universally complete, the function φ : ω 7→ d(K1(ω), K2(ω)) is S-measurable.

Indeed, let T̃ be the d–completion of T. Then, for i = 1, 2, the set Ki is an element
of S ⊗ BT̃, thus, using the Projection Theorem (see [9, Theorem III.23]), we have

{ω ∈ Ω; Ki(ω) ∩ U 6= ∅} = πΩ (Ki ∩ (Ω× U)) ∈ S

for any open subset U of T̃. But, from [9, Theorem III.9], this is equivalent to each
of the following properties :

• for each t ∈ T̃, the function ω 7→ d(t,Ki) is S–measurable,

• there exists a sequence (ϕin)n∈N of S–measurable mappings Ω→ T̃ such that,
for every ω ∈ Ω, ϕin(ω) ∈ Ki(ω) and Ki(ω) is the τ0–closure of {(ϕin(ω)); n ∈
N}.

Thus φ = infm,n∈N d(ϕ1
m, ϕ

2
n) is S–measurable.

Now set, for i = 1, 2,

Gi =

{
(ω, t) ∈ Ω× T; d(t,Ki(ω)) <

φ(ω)

3

}
.

It is clear that G1 ∩ G2 = ∅ and that, for i = 1, 2, we have Ki ⊂ Gi and Gi(ω)
(i = 1, 2) is τ–open for each ω ∈ Ω. Furthermore, for each n ∈ N, the function

gin : (ω, t) 7→ d
(
ϕin(ω), t

)
− φ(ω)

3

is S ⊗ BT–measurable, thus Gi = ∪n∈N(gin)−1([−∞, 0[) belongs to S ⊗ BT.
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Let us now allow each Ki to have empty values. From the Projection Theorem,
as (Ω,S) is universally complete, the sets {ω ∈ Ω; Ki(ω) 6= ∅} are S-measurable.
Consider the S-measurable sets

Ω0 = {ω ∈ Ω; K1(ω) = ∅ and K2(ω) = ∅},
Ω1 = {ω ∈ Ω; K1(ω) = ∅ and K2(ω) 6= ∅},
Ω2 = {ω ∈ Ω; K1(ω) 6= ∅ and K2(ω) = ∅},
Ω3 = {ω ∈ Ω; K1(ω) 6= ∅ and K2(ω) 6= ∅}.

The same arguments as above show the existence of two disjoint elements G′1 and
G′2 of G, contained in Ω3 × T, such that Ki ∩ (Ω3 × T) ⊂ G′i (i = 1, 2). To prove
Property IV, we only need to set

Gi(ω) =


∅ if ω ∈ Ω0,
∅ if ω ∈ Ωi

T if ω ∈ Ω3−i,
G′i(ω) if ω ∈ Ω3.

Proof of V’. Let (Ki)i∈I be a countable family of elements of K which filters
downwards to ∅. For each ω ∈ Ω, (Ki(ω))i∈I is a family of compact subsets of T
which filters downwards to ∅, thus there exists an element i of I such that Ki(ω) = ∅.
We can enumerate the elements of I: I = {i0, i1, . . . }, and we can endow I with the
ordering associated with this enumeration: i0 ≤ i1 ≤ . . . . For each ω ∈ Ω, let us
denote by α(ω) the smallest i such that Ki(ω) = ∅. Using the Projection Theorem
as in the proof of Property IV, we see that, for each i ∈ I, the set

Ai = {ω ∈ Ω; α(ω) = i} = (πΩ(Ki))
c ∩

⋂
j≤i−1

πΩ(Kj)

is measurable. Thus the family (Ai)i∈I is a measurable partition of Ω. For each
integer n ∈ N, let Ωn = Ai0 ∪ · · · ∪ Ain . As (Ki)i∈I filters downwards to ∅, there
exists an element j1 of I such that Kj1 ⊂ Ki0 ∩ Ki1 . We then have Kj1(ω) = ∅
on Ai0 ∪ Ai1 = Ω1. By induction, we can construct a sequence (Kjn)n≥1 such that
Kjn(ω) = ∅ on Ωn.

Now, we have ∪n∈NΩn = Ω. For each n ≥ 1, the mapping fn : Q 7→ Q(Ωn) is
continuous on the closure of (πΩ)] (M) for the s–topology. By Dini Lemma, (fn)n
converges uniformly on the closure of (πΩ)] (M) to f : Q 7→ Q(Ω). Let ε > 0. We
can thus find an n ≥ 1 such that

∀µ ∈M (πΩ)] (µ) (Ωc
n) ≤ ε.

Let Gn = Ωc
n × T. We have Kjn ⊂ Gn and

∀µ ∈M µ(Gn) = (πΩ)] (µ) (Ωc
n) ≤ ε.
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This shows that

inf
i∈I

sup
µ∈M

inf
G∈G, G⊃Ki

µ(G) ≤ ε.

As ε is arbitrary, this proves Property V’.

We can now give an adaptation of Topsøe’s compactness criterion ([32, Corollary
2], see also [34, 22]).

Recall that a subset K of a topological space T is net–compact if every net of
elements of K admits a subnet which converges in T, or equivalently, if every universal
net of elements of K is convergent in T (see [20] about subnets and universal nets).
We say that K is relatively compact if it is contained in a compact subset of T. Thus
every relatively compact subset of T is net–compact. The converse implication is
true if T is regular (see the proof in [25] or [22]).

If C and E are two pavings on Ω× T, we say that E dominates C if each element
of C is contained in some element of E .

Theorem 2.3 (Topsøe Criterion) Assume that T is Suslin submetrizable. Let
M be a subset ofM+(Ω× T). Then M is T∗–net–compact if and only if Conditions
(i) and (ii) below are satisfied.

(i) The set (πΩ)] (M) is net–compact for the s–topology.

(ii) For any subfamily G ′ of G∗ which dominates K and for each ε > 0, there exists
a finite subfamily G ′′ of G ′ such that, for every µ ∈ M, we can find G ∈ G ′′
such that µ(Gc) < ε.

Conditions of net–compactness in the s–topology have been given in [32, 15, 1]. In
particular, if a subset M ofM+(Ω) is relatively compact, then it is equicontinuous,
that is, for each decreasing sequence (An)n in S such that ∩nAn = ∅, we have
limn supµ∈M µ(An) = 0 [15]. This result will be helpful in Corollary 3.4.

Proof. With the help of Lemma 2.1, this is a simple adaptation of Topsøe’s proof
[32, 34]. We sketch the proof for the convenience of the reader, and we detail some
parts that will be helpful to prove Theorem 2.6.

To simplify notations, we assume that (Ω,S) is universally complete.
The “only if” part of the proof is exactly as in [32] or [34], and does not rely on

Properties I to V’. The shortest way ([34, Theorem 3.1]) goes as follows. Assume
that M is T–net–compact. Then (i) obviously holds true. If (ii) is not satisfied, there
exists a family G ′ = (GK)K∈K, with GK ⊃ K for each K ∈ K, such that, for each
finite subfamilily G ′′ of G ′, there exists µ ∈ M satisfying min{µ(Gc); G ∈ G ′′} > ε.
Now, the family

(OGK )K∈K :=
(
{µ ∈M+(Ω× T); µ(Gc

K) < ε}
)
K∈K
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is an open cover ofM+(Ω× T) (indeed, as T is Suslin, each measure on T is Radon,
thus, for each µ ∈ M+(Ω× T) there exists H ∈ K such that µ(Ω × Hc) < ε; if
we take K = Ω × H, we thus have µ ∈ OGK ). By net–compactness of M, we can
extract a finite subfamily G ′′ of G ′ such that (OG)G∈G′′ is an open cover of M (see

[22, Proposition 1]), which leads to a contradiction.
Assume now that (i) and (ii) are satisfied. Let (µα)α∈A be a universal net in M.

Thanks to (i), we have supµ∈M µ(Ω× T) < +∞. We can thus define a bounded set
function ν : G → [0,+∞[ by

∀G ∈ G ν(G) = lim
α
µα(G).

The mapping ν is monotone (that is, G ⊂ G′ ⇒ ν(G) ≤ ν(G′)), additive (that is,
G ∩ G′ = ∅ ⇒ ν(G ∪ G′) = ν(G) + ν(G′)) and subadditive (that is, ν(G ∪ G′) ≤
ν(G) + ν(G′)). Let (Ki)i∈I be a countable family of elements of K which filters
downwards to ∅. By (i) and Property V’ of Lemma 2.1, we have

inf
i∈I

inf
G∈G, G⊃Ki

ν(G) ≤ inf
i∈I

sup
µ∈M

inf
G∈G, G⊃Ki

µ(G) = 0 = ν(∅),(2.1)

that is, ν is σ–smooth at ∅ w.r.t. K. Let us define a set function µ on S ⊗ BT by

(2.2) ∀B ∈ S ⊗ BT µ(B) = sup
K⊂B,K∈K

inf
G∈G, G⊃K

ν(G).

From Properties I to IV of Lemma 2.1 and from (2.1) and [32, Theorem 2], the set
function µ is a measure on S ⊗ BT. Moreover, we obviously have

(2.3) ∀G ∈ G µ(G) ≤ lim inf
α

µα(G).

To conclude that (µα)α converges to µ, we thus only need to prove that

(2.4) µ(Ω× T) = lim
α
µα(Ω× T).

Assume that (2.4) is not satisfied. There exist ε > 0 and, for each K ∈ K, an
element GK of G such that GK ⊃ K and limα µ

α(GK) + 2ε ≤ limα µ
α(Ω × T). We

then obtain a contradiction with (ii) by taking G ′ = {GK ; K ∈ K}. This proves
that M is net–compact.

From Topsøe’s criterion we get generalizations of Prokhorov’s compactness cri-
terion. We first need to define some notions of tightness in M+(Ω× T).

Let us say that a subset M ofM+(Ω× T) is flexibly tight if, for each ε > 0, there
exists K ∈ K such that supµ∈M µ(Kc) < ε. Let us say that M is strictly tight if, for
each ε > 0, there exists K ∈ K such that supµ∈M µ(Ω×Kc) < ε. Thus M is strictly
tight if and only if (πT)] (M) is tight in the usual sense.

Applying Theorem 2.3, we immediately have the following result, which extends
[5, Theorem 5.2] in that T is not necessarily regular and that we obtain compactness
for a topology which is finer than the ws–topology.
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Proposition 2.4 Assume that T is Suslin submetrizable and let M be a flexibly
tight subset of M+(Ω× T) such that (πΩ)] (M) is net–compact for the s–topology.
Then M is net–compact for T∗ (and thus also for T).

We can weaken the hypothesis on T at the cost of replacing flexible tightness by
strict tightness.

Proposition 2.5 Assume that the compact subsets of T are metrizable. Let M
be a stricly tight subset of M+(Ω× T) such that (πΩ)] (M) is net–compact for the
s–topology. Then M is net–compact for T∗ (and thus also for T).

Proof. Let (Kn)n≥1 be an increasing sequence in K such that, for each n ≥ 1,
supµ∈M µ(Ω×Kc

n) < 1/n. Let T0 = ∪n≥1Kn. We have µ(Ω×Tc0) = 0 for each µ ∈M.
Furthermore, if (µα)α∈A is a net in M which converges to some µ ∈M+(Ω×T), we
have, for each n ≥ 1, µ(Kc

n) ≤ lim infα µ
α(Kc

n) ≤ 1/n, Thus the closure M of M for
T can be identified with a subset of M+(Ω × T0) and the topology T coincides on
M with the stable topology on M+(Ω× T0). Moreover, T0 is a countable union of
Lusin spaces, thus it is Lusin. We can thus apply Proposition 2.4 in M+(Ω × T0)
to conclude that M is net–compact.

Recall that a Hausdorff topological space T is Prokhorov if and only if every
compact subset of τ–regular measures on T is tight (see e.g. [6]). We can now give
a generalization of a criterion of Jacod and Mémin ([17, Théorème 2.8], see also [29,
Theorem 3.10] and [5, Theorem 5.2]), which was given for the Polish case.

Corollary 2.6 (Jacod and Mémin’s criterion) Assume that T is Suslin sub-
metrizable and Prokhorov. Let M ⊂M+(Ω× T). Then M is T–net–compact if and
only if Conditions (a) and (b) below are satisfied.

(a) (πΩ)] (M) is net–compact in the s–topology on M+(Ω).

(b) (πT)] (M) is net–compact in the narrow topology on M+(T).

Proof. The necessary condition is obvious.
Assume now that (a) and (b) are satisfied. As T is Suslin, every element of

M+(T) is τ–regular. From (b) and the Prokhorov property, M is stricly tight. The
result thus follows from Proposition 2.5.

3. Metrizability, sequential compactness. We start with a result which is
very similar to a classical one for narrow convergence [33, Theorem 8.1]. Similar
results (but for sequences) are given in [17, 5]. Let us fix some definitions and
notations. A (bounded) measurable mapping f : Ω × T → R is called a (bounded)
integrand. We say that f is a (bounded) continuous integrand (resp. a (bounded)
l.s.c. integrand) if furthermore f(ω, .) is continuous (resp. l.s.c.) for every ω ∈ Ω.
If f : Ω → R and g : T → R are measurable mappings, we denote by f ⊗ g the
integrand defined by (f ⊗ g)(ω, t) = f(ω)g(t) for every (ω, t) ∈ Ω× T.
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Theorem 3.1 (Portmanteau Theorem) Assume that T is metrizable Suslin.
Let d be a distance on T which is compatible with the topology of T. Let (µα)α∈A
be a net in M+(Ω× T) and let µ ∈ M+(Ω× T). The following conditions are
equivalent.

1. (µα)α converges to µ in the stable topology.

2. lim infα µ
α(f) ≥ µ(f) for every bounded l.s.c. integrand.

3. limα µ
α(f) = µ(f) for every bounded continuous integrand.

4. limα µ
α( 1lA ⊗ g) = µ( 1lA ⊗ g) for every A ∈ S and every bounded mapping

g : T→ R which is Lipschitz for d.

Proof. In Conditions 1, 2, 3, we can restrict without loss of generality the range of
the mappings f to the open interval ]0, 1[.

1 ⇒ 2. For any integrand f : Ω× T → ]0, 1[, and for any µ ∈ M+(Ω× T), we
have

1

n

(
1 +

n−1∑
k=1

µ {f > k/n}

)
≥ µ(f) ≥ 1

n

n−1∑
k=1

µ {f > k/n} .

Assume that f is l.s.c. For every real number a, the set {f > a} is in G. Using
Condition 1, we thus have, for every integer n ≥ 1,

lim inf
α

µα(f) ≥ lim inf
α

{
1

n

n−1∑
k=1

µα {f > k/n}

}
≥ 1

n

n−1∑
k=1

lim inf
α

µα {f > k/n}

≥ 1

n

n−1∑
k=1

µ {f > k/n} ≥ µ(f)− 1/n,

which proves 2.
2⇒ 3 and 3⇒ 4 are obvious.
4⇒ 1.
First step (this part of the proof is inspired from [18]). Let f : Ω× T → R

be a bounded integrand such that f(ω, .) is Lipschitz for d. We shall prove that
limα µ

α(f) = µ(f).
From the classical Portmanteau Theorem for narrow convergence on separable

metric spaces (see e.g. [12]), Condition 4 means that, for every A ∈ S, the net
(µα( 1lA ⊗ .))α of elements of M+(T) narrowly converges to the measure µ( 1lA ⊗ .).
But this is independent from the distance d. We can thus choose a distance d such
that (T, d) be totally bounded (see [13, 23]). Then the space Cu(T, d) of d–uniformly
continuous functions on T is separable for the supremum norm ‖.‖∞. In particular,



7.13 Compactness criteria for the stable topology

the set BLd(T) of bounded Lipschitz functions is separable. Let D = {h0, h1, . . . }
be a countable dense subset of BLd(T). Let ε > 0. For each ω ∈ Ω, let

N(ω) = inf{n ∈ N; ‖f(ω, .)− hn‖∞ < ε}.

For each integer n ≥ 1, let

An = {ω ∈ Ω; N(ω) = n} .

Let h =
∑

n∈N 1lAn ⊗ hn. Condition 4 implies in particular that limα µ
α(Ω× T) =

µ(Ω× T). We thus have

(3.1) lim sup
α
|µα(f − h)| ≤ ε µ(Ω× T) and |µ(f − h)| ≤ ε µ(Ω× T).

Now, there exists an integer n0 such that µ(∪n>n0(An×T)) < εµ(Ω× T). By Condi-

tion 4, we have limα µ
α(∪n>n0(An×T)) = µ(∪n>n0(An×T)). Let h̃ =

∑
n≤n0

1lAn⊗hn.
We thus have

(3.2) lim sup
α

∣∣∣µα(h− h̃)
∣∣∣ ≤ ε µ(Ω× T) and

∣∣∣µ(h− h̃)
∣∣∣ ≤ ε µ(Ω× T).

Morever, we also have

(3.3) lim
α
µα(h̃) = µ(h̃).

Gluing together (3.1), (3.2) and (3.3) for all ε > 0, we obtain that limα µ
α(f) exists

and satisfies
∀ε > 0

∣∣∣lim
α
µα(f)− µ(f)

∣∣∣ ≤ 4ε µ(Ω× T).

We have thus proved that (µα(f))α converges to µ(f).
Second step. From Proposition 1.1, we can assume without loss of generality that

S is universally complete. Let F ∈ F . We only need to prove that lim supα µ
α(F ) ≤

µ(F ). From the Projection Theorem, the set

Ω′ = {ω ∈ Ω; F (ω) 6= ∅}

is in S. Furthermore, F admits a Castaing representation, that is, there exists a
sequence (σn)n∈N of S–measurable mappings defined on Ω′, with values in T, such
that, for every ω ∈ Ω, F (ω) is the closure of {σn(ω); n ∈ N} (see [9, Theorem
III.22]). We define a continuous integrand gd on Ω′ × T, with values in [0,+∞], by

gd(ω, t) =

{
d(t, F (ω)) = infn∈N d(t, σn(ω)) if ω ∈ Ω′,

+∞ otherwise.
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For each ε > 0, the set
Gd,ε = {gd < ε}

is in G, and we have
F = ∩n≥1Gd,1/n.

For each ε > 0, let us define a bounded integrand fd,ε on Ω× T by

fd,ε(ω, t) =


1 if (ω, t) ∈ F
1/ε(ε− gd(ω, t)) if 0 ≤ gd(ω, t) ≤ ε
0 if gd(ω, t) > ε.

For every ω ∈ Ω, f(ω, .) is Lipschitz for d. From the first step, we thus have

lim
α
µα(fd,ε) = µ(fd,ε).

Furthermore, we have
1lF ≤ fd,ε ≤ 1lGd,ε .

This yields

µ(F ) = inf
n≥1

µ(fd,1/n) = inf
n≥1

lim
α
µα(fd,1/n) ≥ lim sup

α
inf
n≥1

µα(fd,1/n) = lim sup
α

µα(F ).

In the preceding theorem, if {(πΩ)] (µα) ; α ∈ A} is equicontinuous (see the def-
inition in the comments after Theorem 2.3), we can relax Condition 4 by replacing
the σ–algebra S by a subset which generates S, which is stable under finite intersec-
tion, and which contains Ω. This is shown slightly more generally in the following
result.

Theorem 3.2 With the same notations and hypothesis as in Theorem 3.1, assume
furthermore that {(πΩ)] (µα) ; α ∈ A} is equicontinuous. Let C be a set of non-
negative S–measurable bounded functions which generates S, which is stable under
multiplication of two elements, and which contains the constant function 1. Then
Conditions 1,2,3,4 of Theorem 3.1 are equivalent to

5. limα µ
α(f ⊗ g) = µ(f ⊗ g) for every f ∈ C and every bounded mapping g :

T→ R which is Lipschitz for d.

Proof. The implication 3⇒ 5 is clear, thus we only need to prove 5⇒ 4.
Without loss of generality, we restrict in Condition 5 the range of the mappings g

to the interval [0, 1]. Let A be the set of bounded measurable mappings f : Ω→ R
such that limα µ

α(f ⊗ g) = µ(f ⊗ g) for every bounded mapping g : T → R which
is Lipschitz for d. The set A is a vector space over R and contains the constant
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functions. Let us check that A is stable under monotone limits of uniformly bounded
sequences. Let (fn)n be an increasing uniformly bounded sequence of elements of A
and let f = supn fn. Let ε > 0. From equicontinuity of the margins of elements of
M on Ω, there exists an integer n0 such that

sup
α
µα((f − fn0)⊗ 1lT) < ε and µ((f − fn0)⊗ 1lT) < ε.

We thus have, for any mapping g : T→ [0, 1] which is Lipschitz for d,

lim sup
α

µα(f ⊗ g) ≤ lim
α
µα(fn0 ⊗ g) + ε ≤ µ(f ⊗ g) + ε = sup

n
µ(fn ⊗ g) + ε

= sup
n

lim
α
µα(fn ⊗ g) + ε ≤ lim inf

α
sup
n
µα(fn ⊗ g) + ε

= lim inf
α

µα(f ⊗ g) + ε.

Thus, ε being arbitrary,

lim
α
µα(f ⊗ g) = µ(f ⊗ g).

From the Functional Monotone Class Theorem (see [10, Théorème 21, page 20] and
[11, page 231]), A contains all bounded measurable functions f : Ω→ R.

Corollary 3.3 (metrizability) Assume that T is Suslin metrizable and that S
is essentially countably generated (that is, there exists a countable subset C of S such
that S is contained in the universal completion of the σ–algebra generated by C). Let
M be a subset of M+(Ω× T) such that (πΩ)] (M) is equicontinuous. Then M is
metrizable.

Note that the metrizability condition on T cannot be removed. Indeed, if Q is any
measure on Ω such that Q(Ω) 6= 0, then t 7→ Q⊗ δt is a continuous embedding from
T into M+(Ω× T) (we denote by δt the Dirac measure concentrated on t).

Proof. From Proposition 1.1, we can assume without loss of generality that S is
countably generated. Let C be a countable algebra which generates S. Let A be the
set of indicator functions of elements of C.

On the other hand, we can find a distance d on T which is compatible with
the topology of T and such that (T, d) is totally bounded (see [13, 23]). The space
BLd(T) of (necessarily bounded) Lipschitz mappings from T to R is separable for the
norm ‖.‖∞. Let E be a countable dense subset of BLd(T). We can assume without
loss of generality that 1lT ∈ E .

Let (µα)α∈A be a net in M and let µ ∈M+(Ω× T). Assume that

∀(f, g) ∈ C × E lim
α
µα(f ⊗ g) = µ(f ⊗ g).
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We have, in particular, limα µ
α(Ω× T) = µ(Ω× T). Let g ∈ BLd(T). For each

ε > 0, we can find gε ∈ E such that ‖g − gε‖∞ ≤ ε. We thus have, for each f ∈ C,

lim sup
α
|µα(f ⊗ g)− µα(f ⊗ gε)| ≤ ‖f‖∞ ε lim sup

α
µα( 1lΩ×T) = ‖f‖∞ ε µ(Ω× T),

thus, ε being arbitrary, (µα(f ⊗ g))α converges and we have

lim
α
µα(f ⊗ g) = µ(f ⊗ g)

From Theorem 3.2, this proves that (µα)α converges to µ. Thus the topology T is
the coarsest topology such that, for each (f, g) ∈ C × E , the mapping µ 7→ µ(f ⊗ g)
is continuous. This proves that the topology TM induced by T on M is metrizable.
Indeed, if we denote C×E = {(fn, gn); n ∈ N}, then a distance ∆ which is compatible
with TM is given by

∆(µ, ν) =
∑
n∈N

2−n
|µ(fn ⊗ gn)− ν(fn ⊗ gn)|

1 + |µ(fn ⊗ gn)− ν(fn ⊗ gn)|
.

We say that a subset K of a topological space T is relatively sequentially compact if
every sequence of elements of K admits a convergent subsequence. This terminology
is not fully consistent with that for net–compactness, but we follow established use.

Corollary 3.4 (sequential compactness from compactness) Assume that
T is Suslin submetrizable and that S is essentially countably generated. Let M be
a relatively compact subset of M+(Ω× T). Then the closure M of M for T is
metrizable, and thus M is relatively sequentially compact.

Proof. Let us denote by τ the topology of T and by τ0 a metrizable topology which
is coarser than τ . The topology τ0 is also Suslin and has the same Borel sets as
τ (see [30]). Therefore the set M+(Ω× T) remains unchanged if we replace τ by
τ0. Let us denote by T(τ0) the stable topology on M+(Ω× T) associated with τ0.
Obviously T(τ0) is coarser than T. Now, the topologies T and T(τ0) coincide on
M because M is compact, Moreover, as (πΩ)]

(
M
)

is compact, it is equicontinuous.

From Corollary 3.3, the set M is thus metrizable for T(τ0). Thus M is metrizable
compact for T.

4. Application to Young measures. Let P be a fixed probability measure
on (Ω,S). We denote by Y(P ) the set of elements µ of M+(Ω× T) such that
(πΩ)] (µ) = P and we endow Y(P ) with the topology induced by T. The elements of
Y(P ) are called Young measures, see e.g. [38, 4]. All preceding results have obvious
versions in Y(P ) (in particular, the compactness criteria are quite simplified!).
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Theorem 4.1 (Compactness criteria for Young measures) Assume that
T is Suslin submetrizable.

1. Every flexibly tight subset of Y(P ) is net–compact.

2. If T is Prokhorov, a subset M of Y(P ) is net–compact if and only if (πT)] (M)
is net–compact in the narrow topology.

3. Every relatively compact subset of Y(P ) is relatively sequentially compact.

Remark 4.2 In particular, every flexibly tight subset of Y(P ) is relatively sequen-
tially compact: this extends slightly a result of relative sequential compactness by
Balder [2], given for regular Suslin spaces.

Proof of Theorem 4.1. Part 1 is a particular case of Proposition 2.4.
Let us prove Part 2. We have (πΩ)] (M) = {P} for every subset M of Y(P ), thus

the condition of net–compactness of (πΩ)] (M) in the s–topology is always trivially
satisfied, in particular, the equicontinuity condition in Theorem 3.2 and Corollary
3.3 is also automatically satisfied. Thus, Part 2 follows from Corollary 2.6.

Now, for Part 3, if we assume that S is essentially countably generated, the
relative sequential compactness follows from Corollary 3.4. So, let us show how to
drop this assumption on S. Let M be a relatively compact subset of Y(P ). By
reasoning on the closure of M, we can assume without loss of generality that M is
compact.

Firstly, let τW be the coarsest topology on Y(P ) such that the mappings µ 7→
µ( 1lA⊗g) are continuous for each A ∈ S and for each bounded continuous function g :
T→ R. This topology is coarser than the stable topology, but, as T is submetrizable,
τW is Hausdorff. As M is compact for the stable topology, both topologies coincide
on M, thus we only need to prove that M is relatively sequentially compact for τW .

Secondly, as T is Suslin, it is a Radon space (see [30]), thus every element µ of
Y(P ) is disintegrable (see [37]), that is, there exists a Borel mapping µ. : ω 7→ µω,
Ω→M+(T) such that µω is a probability for each ω ∈ Ω and such that

(4.1) µ(A×B) =

∫
A

µω(B) dP (ω)

for all A ∈ S and all B ∈ BT. Now, it is well known that the spaceM+(T) is Suslin
(see [30, Theorem 7 page 385]). Thus the Borel σ–algebra BM+(T) is countably
generated [30, Corollary page 108]). Let (µn)n be a sequence in M and let S0

be the σ–algebra generated by the mappings ω 7→ µnω. From Corollary 3.4, (µn)n
is a relatively sequentially compact sequence in M+(Ω × T,S0 ⊗ BT). Let (νn)n
be a subsequence of (µn)n. There exist a further subsequence (λn)n of (νn)n and
an element µ of M+(Ω × T,S0 ⊗ BT) such that (λn)n stably converges to µ in
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M+(Ω × T,S0 ⊗ BT). The measure µ can easily be extended to a measure (also
denoted by µ) on S ⊗ BT, with the help of formula (4.1), and we have µ ∈ Y(P ).
Let A ∈ S and let g : T→ R be a bounded continuous function. We have

lim
n
λn( 1lA ⊗ g) = lim

n

∫
A

λnω(g) dP (ω)

= lim
n
E ( 1lAλ

n
. (g)|S0)

= lim
n
E (E ( 1lA|S0)λn. (g))

= lim
n
λn (E ( 1lA|S0)⊗ g)

= µ (E ( 1lA|S0)⊗ g)

= µ( 1lA ⊗ g).

Thus (λn)n converges to µ for τW .

An immediate consequence of Theorem 4.1 is the following corollary, which was
known in the case when T is Polish (Balder [3, page 573], Valadier with another
proof [19, Theorem 2.4]).

Corollary 4.3 (Equivalence between tightness notions) Assume that T
is Suslin submetrizable and Prokhorov. Then every flexibly tight subset of Y(P ) is
strictly tight.

Proof. As T is Suslin, every element of M+(T) is τ–regular. The result is thus an
immediate consequence of Parts 1 and 2 of Theorem 4.1.
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[26] A. Rényi and P. Révész. On mixing sequences of random variables. Acta Math. Acad.
Sci. Hungar., 9:389–393, 1958.
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des Sciences de Paris pour obtenir le grade de Docteur ès–Sciences. Secrétariat de
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