AN EXISTENCE RESULT FOR A CLASS OF SEMILINEAR DEGENERATE ELLIPTIC EQUATIONS *

XU Chao-Jiang
Institute of Mathematics, Wuhan University, Wuhan 430072, China

ABSTRACT

In this work, we study the semilinear degenerate Dirichlet problem,
\[\sum_{j=1}^{m} X_j^* X_j u + cu + f(x, u, Xu) = 0, \text{ in } \Omega; \quad u = \phi, \text{ on } \partial \Omega, \]
where \(X = \{X_1, \ldots, X_m\} \) is a system of real smooth vector fields which satisfies the Hörmander’s condition. Assume that \(X_1, \ldots, X_m \) satisfies some supplementary conditions on the boundary \(\partial \Omega \), \(f \in C^\infty(\Omega \times \mathbb{R} \times \mathbb{R}^m), \partial_z f(x, z, \xi) \geq 0, \text{sign} \, z f(x, z, 0) \geq \mu > -\infty, c(x) \geq c_0 > 0. \)
With some growth hypothesis of \(f(x, z, \xi) \) in the variables \(\xi \), we have proved the existence and the uniqueness of solution \(u \in C^\infty(\Omega) \) of above semilinear Dirichlet problem, if \(\phi \in C^\infty(\partial \Omega). \)

Key Words Semilinear degenerate elliptic equation, vector fields, “non-isotropic” Hölder’s space, Dirichlet problems.

Classification 35I, 35H.

1 Introduction

In this work, we study the following semilinear Dirichlet problem:

\[\begin{cases} \quad L u \equiv \sum_{j=1}^{m} X_j^* X_j u + cu + f(x, u, Xu) = 0, & \text{in } \Omega \\ \quad u = \phi, & \text{on } \partial \Omega \end{cases} \]

where \(X = \{X_1, \ldots, X_m\} \) is a system of real smooth vector fields defined in an open domain \(M \subset \mathbb{R}^n, n \geq 2, \Omega \) is a bounded open subdomain of \(M \) with \(\partial \Omega \) smooth, \(c(x) \geq c_0 > 0. \ X_j^* = -X_j + c_j \) is the adjoint of \(X_j \). We assume that the system of vector fields \(X = \{X_1, \ldots, X_m\} \) satisfies the following Hörmander’s condition:

\(X_1, \ldots, X_m \) together with their commutators \(X_\alpha = [X_{\alpha_1}, \ldots][X_{\alpha_{a-1}}, X_{\alpha_a}] \ldots \)
up to some fixed length \(r \) span the tangent space at each point of \(M \).

We will study the problem (1) and similar to the case of second order elliptic equations. The role of Laplaceian $-\Delta_x$ is substituted by the Hörmander’s operators $H = \sum_{j=1}^{m} X_j^* X_j + c$. Actually by using the geometry and the function spaces associated with the system of vector fields X, the operators H seems to satisfy nearly all properties of Laplacian $-\Delta_x$ (see [1], [2], [3], [4], [5]). For example, we have proved in [10] the following linear Dirichlet problem:

\[
\begin{align*}
H u &= f, & \text{in } \Omega, \\
u &= \phi, & \text{on } \partial \Omega,
\end{align*}
\]

has a solution $u \in S^{k+2,\alpha}(\Omega)$, if $f \in S^{k,\alpha}(\Omega), \phi \in S^{k+2,\alpha}(\partial \Omega)$, and $\partial \Omega$ satisfies following additional conditions (S. E. $\partial \Omega$)

$\partial \Omega$ is non characteristic for the system X. And for all $1 \leq j \leq r$, we have $X_j^0 = X_j \cap T_x(\partial \Omega)$ for all $x \in \partial \Omega$, and the dimension of X_j^0 is constant in a neighborhood of $\overline{\Omega}$.

Where X_1 is the linear space spanned by the vector fields X_1, \ldots, X_m with smooth real coefficients in $C^\infty(M)$, $X_j = [X_1, X_j-1]$. And for $x \in \partial \Omega, X_j^0 = X_j \cap T_x(\partial \Omega), X_j^0 = [X_1^0, X_j^0-1]$. $S^{k,\alpha}(\Omega)$ is the “non-isotropic” Hölder space associated with the system of vector fields X (see [7] and Section 2).

Then, the Hörmander’s condition implies that $X_j(\xi) = T_x M$ for all $x \in M$. And the condition (S. E. $\partial \Omega$) implies that the bases of X_j^0 (vector fields defined on $\partial \Omega$) satisfies the Hörmander’s condition as well on the manifold $\partial \Omega$ at order r.

Using the results of [8] (Theorem 2), we prove in this work the following theorem:

Theorem 1 Assume that the system of vector fields $X = \{X_1, \ldots, X_m\}$ and $\partial \Omega$ satisfies the Hörmander’s condition and (S. E. $\partial \Omega$). Let $f \in C^\infty(\overline{\Omega} \times \mathbb{R} \times \mathbb{R}^m)$, $\partial_\xi f (x, z, \xi) \geq 0, \sign z f (x, z, 0) \geq \mu > -\infty, f \in S^{k+2,\alpha}(\partial \Omega), k \in \mathbb{N}, 1 > \alpha > 0$, and if there is $\theta \in [1, 2[$, such that $|f|_{\alpha,K,M} \leq C(K^\theta + 1)$ for all $K > 0$ and $0 < M \leq M_0$. Then there exists a solution $u \in S^{k+2,\beta}(\Omega)$ of Dirichlet problem (1) for some $\beta > 0$.

Where we denote by

\[
\begin{align*}
M_0 &= \sup_{\partial \Omega} |\phi| + c_0^{-1} \mu, \\
\Omega_{K,M} &= \overline{\Omega} \times \{|z| \leq M\} \times \{\xi \leq K\}, \\
|f|_{\alpha,K,M} &= \sup_{\Omega_{K,M}} |f(x, z, \xi)| + \sup_{\Omega_{K,M} \times \Omega_{K,M}} \frac{|f(x, z, \xi) - f(x_0, z_0, \xi_0)|}{\rho(x, x_0)^\alpha + |z - z_0|^\alpha + K^{-\alpha} |\xi - \xi_0|^\alpha}.
\end{align*}
\]

Since the equation (1) is degenerate elliptic and subelliptic, we call equation (1) semilinear subelliptic. Using the properties of Hörmander’s operator H, we have proved the interior regularities for quasilinear second order subelliptic equation of form $\sum_{i,j=1}^{m} A_{ij}(x, u, X u)X_i X_j u + B(x, u, X u) = 0$, and the existence of weak solution for variational problems (see [6],[7],[8],[9],[10]).
2 Preliminary Lemmas And Notations

We define now the sub-unit metric on \(M \) associated with \(X \) as in [4] and [7].

Definition 1 Let \(C(\delta) \) be a class of absolutely continuous mappings \(\phi : [0,1] \rightarrow M \) which almost everywhere satisfy the differential equation

\[
\phi'(t) = \sum |J| \leq r \ a_{J}(t)X_{J}(\phi(t))
\]

with \(|a_{J}(t)| < \delta |J| \), then we define

\[
\rho(x, y) = \inf \{ \delta > 0 \mid \exists \phi \in C(\delta) \text{ with } \phi(0) = x, \phi(1) = y \}.
\]

Then, \(\rho \) is a local metric on \(M \), and for any small compact subset \(K \subset M \), there exists a constant \(C > 0 \) such that

\[
C^{-1}|x - y| \leq \rho(x, y) \leq C|x - y|^{1/r}
\]

for any \(x, y \in K \).

We introduce now a class of “non-isotropic” Hölder continuous functions. For \(1 > \alpha > 0 \), we define

\[
S^{\alpha}(\overline{\Omega}) = \left\{ f \in S^{0}(\overline{\Omega}); [f]_{\alpha, \overline{\Omega}}^{X} = \sup_{x,y \in \overline{\Omega}} \frac{|f(x) - f(y)|}{\rho(x, y)^{\alpha}} < +\infty \right\}
\]

and for \(k \in \mathbb{N} \), \(1 > \alpha \geq 0 \), we define

\[
S^{k,\alpha}(\overline{\Omega}) = \{ u \in S^{\alpha}(\overline{\Omega}); X^{j}u \in S^{\alpha}(\overline{\Omega}), \forall |J| \leq k \}
\]

Set:

\[
[u]_{k,0,\overline{\Omega}}^{X} = \sup_{|J| = k} \sup_{x \in \overline{\Omega}} |X^{j}u(x)|
\]

and

\[
[u]_{k,\alpha,\overline{\Omega}}^{X} = \sup_{|J| = k} [X^{j}u(x)]_{k,\alpha,\overline{\Omega}}^{X}.
\]

The norms on \(S^{k,\alpha}(\overline{\Omega}) \) are given by

\[
\|u\|_{S^{k,\alpha}(\overline{\Omega})} = \sum_{j=0}^{k} [u]_{j,0,\overline{\Omega}}^{X} + [u]_{j,\alpha,\overline{\Omega}}^{X}.
\]

Then the norms of \(S^{k,\alpha}(\overline{\Omega}) \) is also convex, and \(S^{k,\alpha}(\overline{\Omega}) \) is a Banach space (see [7]). Hörmander’s condition implies that \(S^{k,\alpha}(\overline{\Omega}) \subset C^{k/r}(\overline{\Omega}) \) for all \(k \in \mathbb{N} \).

Using the hypotheses (S. E. \(\partial \Omega \)) on \(\partial \Omega \), we can also define the functions spaces \(S^{k,\alpha}(\partial \Omega) \) by the bases of \(X_{J}^{0} \) as in (9) (see [8], [10]).

As for the classical Hölder space, we also have the interpolation inequalities in the space \(S^{k,\alpha}(\Omega) \). For \(j + \beta < k + \alpha, j, k \in \mathbb{N}, 0 \leq \alpha, \beta \leq 1, u \in S^{k,\alpha}(\Omega) \), and any \(\varepsilon > 0 \), we have

\[
\|u\|_{S^{j,\beta}(\Omega)} \leq \varepsilon \|u\|_{S^{k,\alpha}(\Omega)} + C(\varepsilon, j, k, \Omega, r) \|u\|_{L^{\infty}(\Omega)}.
\]

In [8] and [10], we have proved a abstract existence results (see Theorem 2 of [8]). We rewrite in the form of this paper.
Theorem 2 Assume that the hypothesis \((S, E. \partial \Omega)\) is satisfied, and \(\phi \in S^{2,\alpha}(\partial \Omega)\) with \(0 < \alpha < 1\). If for some fixed \(0 < \beta < 1\), there exists a constant \(B\) such that for all solutions \(u \in S^{2,\alpha}(\Omega)\) of following Dirichlet problems \((0 \leq \sigma \leq 1)\):

\[
\begin{align*}
\sum_{j=1}^{m} X_j \ast X_j u + \sigma (\alpha u + f(x, u, Xu)) &= 0, \quad \text{in } \Omega, \\
u &= \alpha \phi, \quad \text{on } \partial \Omega.
\end{align*}
\]

we have a priori estimates

\[
\|u\|_{S^{1,\beta}(\Omega)} \leq B.
\]

Then the Dirichlet problem (1) has a solution in the class \(S^{2,\beta}(\Omega)\). Furthermore if \(\phi \in S^{k+2,\alpha}(\partial \Omega)\) with \(k \in \mathbb{N}\), then \(u \in S^{k+2,\beta}(\Omega)\).

Now we have transformed the nonlinear degenerate Dirichlet problems (1) to the the problem of construction of apriori estimates (13).

3 Schauder Estimates For The Hörmander Operators

We study in this section the following linear Dirichlet problem:

\[
Hu = f, \quad \text{in } \Omega; \quad u = \phi, \quad \text{on } \partial \Omega.
\]

with \(c(x) \geq c_0 > 0\). By [1], there exists Green’s kernel \(G(x, y)\) for the operators \(H\).

From [5] and [7] we have

Lemma 1 For \(n \geq 2, K \subset \subset \Omega, \) and \((x, y) \in K \times K\), we have

\[
|X^j G(x, y)| \leq C_J \rho(x, y)^{2-|J|} |B(x, \rho(x, y))|^{-1},
\]

where differential are taken in \(x\) or \(y\).

We shall use the inequality (15) to prove the Schauder estimate of Hörmander operators in the “non-isotropic” Hölder spaces \(S^{k,\alpha}\). Firstly, we have the maximum principle

Lemma 2 If \(u \in S^2(\Omega)\) is a solution of Dirichlet problem (14), \(c(x) \geq c_0 > 0\). Then we have

\[
\|u\|_{L^\infty(\Omega)} \leq c_0^{-1} \|f\|_{L^\infty(\Omega)}.
\]

If \(u \in S^2(\Omega), u \leq 0 \) on \(\partial \Omega\) verifies \(Hu \leq 0\) in \(\Omega\). Then \(u \leq 0\) in \(\Omega\)

This is just the results of J.-M. Bony [1]. We have also

Lemma 3 Let \(u \in S^{2,\alpha}(\Omega), u|_{\partial \Omega} = 0, \alpha > 0\), then there exists a constant \(C\) such that

\[
\|u\|_{S^{2,\alpha}(\Omega)} \leq C \|Hu\|_{S^{\alpha}(\Omega)}.
\]

The proof of this Lemma is in [10], so we have obtain Schauder type estimate in “non-isotropic” function spaces for degenerate elliptic operators. As in the elliptic case, we well use this Lemma to study nonlinear problems (1).
4 A Priori Estimate For Semilinear Equations

Using the maximum principle, we have the following comparison principle.

Lemma 4 Let $u, v \in S^2(\bar{\Omega})$, $Lu \leq Lv$ in Ω, $u \leq v$ on $\partial \Omega$. Under the assumption of Theorem 1, we have $u \leq v$ in Ω.

Proof: Set $w = u - v$, then $w \leq 0$ on $\partial \Omega$ and

$$H(w) + (f(x,u,Xu) - f(x,v,Xv)) \leq 0$$

Remark that

$$f(x,u(x),Xu(x)) - f(x,v(Xv(x)) = f(x,u(x),Xu(x)) - f(x,u(x),Xv(x)) + f(x,u(x),Xv(x)) - f(x,v(x),Xv(x)) = \sum_{j=1}^{m} \partial_{x_j} f(x,u(Xu(x)))X_jw(x) + \partial_z f(x,u(x),Xv(x))w(x).$$

and $\partial_z f(x,u(x),Xv(x)) \geq 0$. We have

$$\sum_{j=1}^{m} (X_j^*X_jw + b_jX_jw) + \bar{c}w \leq 0; \quad w|_{\partial \Omega} \leq 0.$$

with $\bar{c}(x) = c(x) - \partial_{x_i} f(x,u(x)) \geq c_0 > 0$. and $b_j, c \in S^{1,\alpha}(\bar{\Omega})$. Then Lemma 2 implies that $w \leq 0$ in Ω.

Using this Lemma, we get a priori estimates of $\|u\|_{L^\infty}$.

Theorem 3 Under the assumptions of Theorem 1, if $u \in S^2(\bar{\Omega})$, $Lu = 0$ in Ω, then

$$\sup_{\Omega} |u| \leq \sup_{\partial \Omega} |u| + c_0^{-1}|\mu|.$$

Proof: Set

$$v(x) = \sup_{\partial \Omega} u^+ + c_0^{-1}|\mu|,$$

Since $u \leq v$ on $\partial \Omega$, $v \geq 0$ in Ω, then

$$f(x,v,Xv) = f(x,v,0) \geq \mu.$$

using the comparison principle, we have

$$Lv = c(x)v(x) + f(x,v,0) \geq c(x)\mu + \mu \geq 0 = Lu, \text{ in } \Omega,$$

by Lemma 2, we have proved $u \leq \sup_{\partial \Omega} u^+ + c_0^{-1}|\mu|$ in Ω. In the other hand, set

$$v_1(x) = \inf_{\partial \Omega} u^- - c_0^{-1}|\mu|,$$
Since $u \geq v_1$ on $\partial \Omega$, $v_1 \leq 0$ in Ω, then
\[f(x, v_1, Xv_1) = f(x, v_1, 0) \leq -\mu. \]

using the comparison principle, we have
\[Lv_1 = c(x)v(x)_1 + f(x, v_1, 0) \leq -c(x)c_0|\mu| - \mu \leq 0 = Lu, \text{ in } \Omega, \]
by Lemma 2, we have proved $u \geq \inf_{\partial \Omega} u^0 = \frac{c_0}{c_1}|\mu|$ in Ω. Which prove the Theorem 3.

Theorem 4 Let $u \in S^{2,\alpha}(\Omega)$, $1 > \alpha > 0$ be a solution of Dirichlet problem (12). Under the assumption of Theorem 1, we have
\[\|u\|_{S^{2,\beta}(\Omega)} \leq B < +\infty, \]
with $\beta = \min\{\frac{\alpha}{2\theta-\alpha}, \frac{\theta-\alpha}{\alpha}\}$, $B = B(n, m, r, \alpha, \theta, c_0, \mu)$.

Proof: Set $K = \max\{1, |Xu|_{0,\Omega}\}$, $K_{\nu} = \|Xu\|_{S^\nu(\Omega)}$ for $u \in [0, 1]$, $f(x) = f(x, u(x), Xu(x))$. Since $\|u\|_{L^\infty} \leq M_0$, we have
\[\|f\|_{S^{2,\alpha}(\Omega)} = \|f\|_{L^\infty(\Omega)} + \sup_{x,y\in\Omega} \frac{|f(x) - f(y)|}{\rho(x,y)^{\alpha\nu}} \leq C(K^\theta + 1)\left(1 + K^{\alpha\nu} + K_{\nu} - \alpha K_{\nu}^\alpha\right) \leq C_1(K^{\theta+\alpha\nu} + K^{\theta-\alpha}K_{\nu}^\alpha). \]

Using the Schauder’s estimate (17) of linear Dirichlet problems
\[Hu = -\bar{f}, \text{ in } \Omega, \quad u = \phi, \text{ on } \partial \Omega. \]
We have
\[\|u\|_{S^{2,\alpha}(\Omega)} \leq C\left\{\|u\|_{L^\infty(\Omega)} + \|\phi\|_{S^{2,\alpha}(\partial \Omega)} + \|f\|_{S^{\alpha\nu}(\Omega)}\right\} \leq C\left\{M_1 + \|\phi\|_{S^{\nu}(\Omega)}\right\} \leq C_2\left\{K^{\theta+\alpha\nu} + K^{\theta-\alpha}K_{\nu}^\alpha\right\}. \]

We need now the following precise interpolation inequality:
\[\|u\|_{S^{2,\alpha}(\Omega)} \leq \epsilon\|u\|_{S^{2,\alpha}(\Omega)} + C_\alpha \epsilon^{-2/\alpha}\|u\|_{L^\infty(\Omega)}; \]
\[\|u\|_{S^{1,\beta}(\Omega)} \leq \epsilon\|u\|_{S^{1,\beta}(\Omega)} + C_\beta \epsilon^{-(1+\beta)/(1-\beta)}\|u\|_{L^\infty(\Omega)}; \]
\[\|u\|_{S^1(\Omega)} \leq \epsilon\|u\|_{S^1(\Omega)} + C\epsilon^{-1}\|u\|_{L^\infty(\Omega)}, \]
for any $\alpha, \beta, \epsilon \in [0, 1]$. \[6 \]
Taking $\varepsilon = \frac{1}{C^2}$ in (20), we have
\[\|u\|_{S^2(\Omega)} \leq K^{\theta+\alpha \nu} + K^{\theta-\alpha} K_{\nu}^\alpha + C(\nu) M_0, \]
and take $\varepsilon = K^{\alpha-\theta}/2$ in (21), then
\[\|u\|_{S^1(\nu:\nu)(\Omega)} \leq \frac{1}{2} K^{\alpha+\alpha \nu} + \frac{1}{2} K_{\nu}^\alpha + C(\nu, M_0) K^{(\theta-\alpha)(1+\nu)/(1-\nu)}. \]
Take $\beta = \nu$, using $K_{\beta} \geq 1$, we obtain
\[\|u\|_{S^1(\beta)(\Omega)} \leq C_3 K^\theta. \]
(23)
Which implies that
\[\|f\|_{S^{\alpha\beta}(\Omega)} \leq C K^{\theta+\alpha\theta-\alpha} \leq C K^{2\theta}. \]
Hence, for all $\gamma, \varepsilon \in [0, 1]$, we have
\[\|u\|_{S^1(\Omega)} \leq \varepsilon\|u\|_{S^1(\Omega)} + C \varepsilon^{-1} M_0 \leq \varepsilon (M_1 + \|f\|_{S^{\alpha\beta}(\Omega)}) + C \varepsilon^{-1} M_0 \leq \varepsilon\|f\|_{S^{\alpha\beta}(\Omega)} + C(M_0) \varepsilon^{-1}. \]
Now convexity of norms in $S^\alpha(\Omega)$ give that
\[\|f\|_{S^{\alpha\beta\gamma}(\Omega)} \leq 4 \left(\|f\|_{S^\alpha(\Omega)} \right)^\gamma \left(\|f\|_{L^\infty(\Omega)} \right) \leq C K^{2\theta+\gamma} K^{\theta(1-\gamma)} = C K^{\theta(1+\gamma)}. \]
Take $\gamma = \frac{2-\theta}{2\theta}$, we have
\[K \leq \|u\|_{S^1(\Omega)} \leq C(\theta, M_0) \varepsilon^{-1} + \varepsilon C_4 K^{1+\frac{\theta}{2}}. \]
Since $\frac{\theta}{2} < 1$, let $\varepsilon = \min\{\frac{1}{2}, (2C_4 K^{\theta/2})^{-1}\}$, we have
\[K \leq C_5, \]
where C_5 is independent on u. So we have proved Theorem 3 by use (23).

End of proof of Theorem 1

The uniqueness of solution of the Dirichlet problem (1) is immediate from the comparison principle Lemma 4. The existence of solution give by abstract Theorem 2 and a priori estimates Theorem 3.
References

