UPRES-A CNRS 6085 Publication 9704
Auteur : D. FOURDRINIER, A. PHILIPPE, C.P. ROBERT

Titre : Estimation of a non-centrality parameter under Stein type like losses.

Année : 1997

Référence : soumis

Mots-clefs : Chi-squared distribution, entropy loss, Blyth's condition, admissibility, minimaxity.

Classification AMS : 62C15, 62C20, 62E25, 62F15

Résumé :
L'estimation du paramètre de non centralité d'une loi du Chi-deux, bien que simple à énoncer, présente de nombreuses difficultés, aussi bien pour l'inférence fréquentiste que pour l'inférence bayésienne. Nous proposons dans cet article, une classe d'estimateurs de Bayes impropres admissible sous le coût de Stein. L'expression de la densité à partir des fonctions de Bessel ne permet pas une étude analytique du second critère d'optimalité fréquentiste, la minimaxité. Cependant, une étude numérique permet la détermination d'un estimateur optimal pour ce critère au sein de cette classe. Une comparaison du risque minimax à l'intérieur d'une classe plus large conforte la potentielle optimalité de notre estimateur de Bayes.

Abstract :
The estimation of the noncentrality parameter of a chi-squared distribution, although simple to state, leads to difficulties, both for frequentist and Bayesian inferences. We propose in this paper a family of admissible improper Bayes estimators and study the minimax behavior of these estimators under Stein loss and its symmetric version. Although no formal minimaxity result can be stated, we show through comparison with a family of natural estimators that the (restricted) minimax estimator deduced from this study is quite acceptable.

Pour obtenir le fichier pub9704.ps.gz.